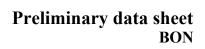


iND83201 "BON "

indie's highly integrated, high power supply microcontroller with high power I/Os

10/13/16


Preliminary Data sheet

1.0 TABLE OF CONTENT

1.0	TABLE OF CONTENT
2.0	LIST OF TABLES
3.0	LIST OF FIGURES
4.0	REGISTER CONVENTION
5.0	GENERAL DESCRIPTION
6.0	PINOUT AND PACKAGE
6.1	Package overview
6.2	Package dimensions9
6.3	Pin Description
7.0	ELECTRICAL CHARACTERISTICS 12
7.1	Absolute maximum Rating12
7.1 7.2	Recommended Operating Conditions12
	•
7.2	Recommended Operating Conditions12
7.2 7.3	Recommended Operating Conditions 12 Current Consumption 13 DEVICE OVERVIEW 14 Microcontroller Subsystem 15 .1 Timers (0,1, and 2) 15 .2 Watch Dog Timer 18
7.2 7.3 8.0 8.1 8.1 8.1 8.1	Recommended Operating Conditions 12 Current Consumption 13 DEVICE OVERVIEW 14 Microcontroller Subsystem 15 .1 Timers (0,1, and 2) 15 .2 Watch Dog Timer 18 .3 Interrupt Vectors 20 LIN 22
7.2 7.3 8.0 8.1 8.1 8.1 8.2 8.2	Recommended Operating Conditions. 12 Current Consumption 13 DEVICE OVERVIEW. 14 Microcontroller Subsystem 15 .1 Timers (0,1, and 2) 15 .2 Watch Dog Timer 18 .3 Interrupt Vectors 20 LIN 22 21 LIN Interface 22 UART 35 .1 UART Operation 35

8.4.2	SPI Registers	43
8.5 l ² C	Interface	46
8.5.1	I2C Functionality	
8.5.2	I2C Registers	
0.3.2		
8.6 AD	С	60
8.6.1	ADC Description	60
8.1.1	ADC Registers	65
8.7 Pu	se Width Modulators (PWM)	69
8.7.1		
8.7.2		
0.7.2		
8.8 GP	IOs	74
	GPIO Registers	
8.9 Sh	ort Circuit Protection Circuits	100
8.9.1	Fuse Elimination Usage Description	
8.9.2	Short Circuit Protection Usage Description	
8.9.3	Short Circuit Protected Related Registers	
0.9.5		
8.10 C	ock Sources	
8.10.1	Clock Sources Characteristics	
8.10.2	Clock Related Registers	
8.10.3	Clock Sources Usage Description	
8.10.4	Power Management Unit (PMU)	
8.10.5	PMU Registers	
8.10.6	PMU Usage Description	
8.11 W	ake-Up Timer	111
9.0 RI	EVISION HISTORY	112
10.0 C	CONTACTS	112

2.0 LIST OF TABLES

Table 1 : PIn List	10
Table 2 : Absolute Maximum Ratings	12
Table 3 : Recommended Operating Conditions	12
Table 4 : Current Consumption	13
Table 5 : Interrupt Vector Table	20
Table 6 - ID bits and number of bits	22
Table 7 - LIN Inactivity Time	23
Table 8 - LIN Wake-Up Repeat Time	23
Table 9 - LIN Timing Related Registers	23
Table 10 - LIN Timing Related Registers	24
Table 11- LIN data length (when the length bits have the value "1111b")	32
Table 12 - UART baud rates, divider values and errors	36
Table 13 : SPI interface signals	41
Table 14 - Filter Tabs and output	58
Table 15 : ADC Performance Specification, Recommended Operating Conditions, unless otherwise specified	60
Table 16 PWM Prescaler Divide Values	69
Table 17 -GPIO Characteristics, Typical Operating Conditions	74
Table 18 - GIO and SIO Pin Functional Configuration	76
Table 19 - Clock Performance Specification, recommended operating conditions unless otherwise specified	103
Table 20 - Peripherals with specific clock source requirements	105

3.0 LIST OF FIGURES

Figure 1: Pinout Diagram (Top View)	8
Figure 2: QFN (7mm x 7mm) 48-pin Package Dimensions	9
Figure 3: BON Block Diagram	14
Figure 4– SPI Timing Diagram	42
Figure 5 – Slave Mode Timing Waveform with CLK_ST_ENB = 1 (Reception, 7-bit Address Mode)	48
Figure 6 – Slave Mode Timing Waveform with CLK_ST_ENB = 0 (Reception, 7-bit Address Mode)	49
Figure 7 – Slave Mode Timing Waveform (Transmission, 7-bit Address Mode)	49
Figure 8 – Slave Mode Timing Waveform (Reception, 10-bit Address Mode)	50
Figure 9 – Slave Mode Timing Waveform (Transmission, 10-bit Address Mode)	50
Figure 10 – Master Timing Waveform (Transmission)	54
Figure 11 – Master Timing Waveform (Reception)	55
Figure 12– ADC Block Diagram	61
Figure 13– ADC Input Settling Time	62
Figure 14– ADC Reference Voltage	63
Figure 15 - Typical GIO Interface	76
Figure 16 - Typical SIO Interface	77
Figure 17: Freewheel Action	78
Figure 18 – LED pin Block Diagram	79

4.0 REGISTER CONVENTION

Several registers will be defined and explained throughout this document. The general format of the

Name of the Register		Starting Address (Hex)			Reset or Default Value (Hex)			
R/W	R/W	R/W	R/W R/W R/W			R/W	R/W	
Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	
MSB							LSB	

description of the registers is as follows:

.

Where R/W is the read and write permissions of the specific bit.

5.0 GENERAL DESCRIPTION

BON integrates an ARM Cortex-M0 low cost 32-bit microcontroller containing 160KB of flash program memory and 8KB of SRAM. It implements peripherals intended for car alarms, home alarms and garage door openers.

Main features are:

Architecture:

- ARM Cortex-M0 processor:
 - Run up to 20MHz (nominal 3.58MHz Crystal)
 - 10MHz Internal RC.
 - o Internal 10KHz R-C low-power oscillator, for current saving operation
- System Tick Timer (SysTick 24 bits, interruptible)
- Serial Wire Debugger
- Built-in Nested Vectored Interrupt Controller (NVIC)
- Programmable Watch-Dog Timer Memory:
- 160KB of Flash Program Memory
- 8KB of SRAM
- Self-Programming

Peripherals:

- 36 General purpose I/O ports, several with Vbat and Relay Driver (200mA) capability
- Protected high current internal pull downs
- IOs with High Voltage Capability, Relay Driver Capability and selectable automatic polling mode to reduce supply current
- 2 x ADC (8-bit), total of 27 channels, and selectable input references.
- 2 x PWM (12-bit)
- LIN Interface (2.0)
- UART Interface
- SPI Interface
- I2C Interface
- LED drivers

Package: 7x7 48 pin QFN package

6.0 PINOUT AND PACKAGE

6.1 PACKAGE OVERVIEW

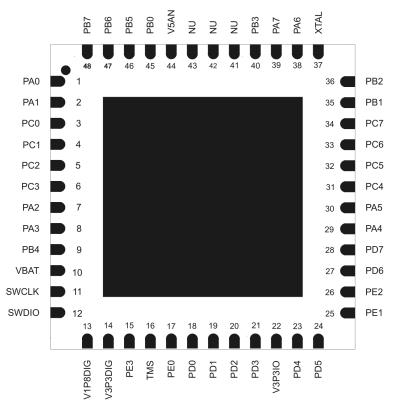


Figure 1: Pinout Diagram (Top View)

6.2 PACKAGE DIMENSIONS

The dimensions of the package are defined in the following table and drawings:

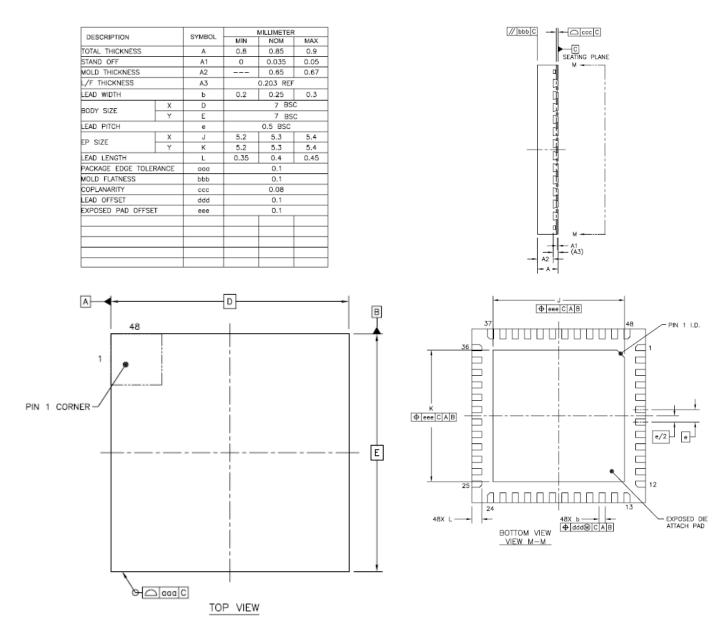


Figure 2: QFN (7mm x 7mm) 48-pin Package Dimensions

6.3 PIN DESCRIPTION

Table 1 : PIn List						
Pin#	Name	Туре	Description			
1	PA0	GIO	General purpose I/O operating over full Vbat range			
2	PA1	GIO	General purpose I/O operating over full Vbat range			
3	PC0	SIO	High current, general purpose I/O operating over full Vbat range			
4	PC1	SIO	High current, general purpose I/O operating over full Vbat range			
5	PC2	SIO	High current, general purpose I/O operating over full Vbat range			
6	PC3/PWM2	SIO	High current, general purpose I/O operating over full Vbat range, with PWM			
7	PA2	GIO	General purpose I/O operating over full Vbat range			
8	PA3	GIO	General purpose I/O operating over full Vbat range			
9	PB4	PSIO	General purpose I/O operating over full Vbat range, with high current sourcing capability			
10	VBAT	Supply	9V to 45V battery voltage			
11	SWCLK	Digital Input	Serial Clock Input (Debugger)			
12	SWDIO	DiglO	Serial Data (Debugger)			
13	V1p8DIG	Analog output	1.8V digital voltage regulator output for external circuit and/or bypass capacitor. Used internally to supply MCU and SRAM.			
14	V3p3DIG (Vdd)	Analog output	Vdd, 3.3V digital voltage regulator output for external circuit and/or bypass capacitor. Used internally to supply digital circuits			
15	PE3/TCK	3V3IO	3.3V I/O, or JTAG test mode clock			
16	TMS	3V3IN	JTAG test mode select			
17	PE2/LIN_TR_EN TDI	3V3IO	3.3V I/O, LIN_TR_EN or JTAG TDI			
18	PD0/MISO	3V3IO	3.3V I/O, SPI-MISO			
19	PD1/MOSI	3V3IO	3.3V I/O, SPI-MOSI			
20	PD2/SCK	3V3IO	3.3V I/O or SPI-SCK			
21	PD3/SSEL	3V3IO	3.3V I/O, SPI-SSEL			
22	V3p3IO	Analog output	3.3V voltage regulator output for external circuit and/or bypass capacitor			
23	PD4/UTXD/URXD	3V3IO	3.3V I/O, UART-TXD or UART-RXD			
24	PD5/UTXD/URXD	3V3IO	3.3V I/O, UART-TXD or UART-RXD			
25	PE0/SCL	3V3IO	3.3V I/O or open drain I2C SCL			
26	PE1/SDA/TDO	3V3IO	3.3V I/O or open drain I2C-SDA or JTAG TDO			

Indie

Table 1 : PIn List						
Pin#	Name	Туре	Description			
27	PD6/LTXD/LRXD	3V3IO	3.3V I/O, LIN-TXD or LIN-RXD			
28	PD7/LTXD/LRXD	3V3IO	3.3V I/O, LIN-TXD or LIN-RXD			
29	PA4	GIO	General purpose I/O operating over full Vbat range or sensing input for short circuit protection			
30	PA5	GIO	General purpose I/O operating over full Vbat range or sensing input for short circuit protection			
31	PC4	SIO	High current, general purpose I/O operating over full Vbat range			
32	PC5/PWM1	SIO	High current, general purpose I/O operating over full Vbat range with PWM			
33	PC6	SIO	High current, general purpose I/O operating over full Vbat range			
34	PC7/PWM1	SIO	High current, general purpose I/O operating over full Vbat range with PWM			
35	PB1/PWM2	GIO	General purpose I/O operating over full Vbat range with PWM			
36	PB2	GIO	General purpose I/O operating over full Vbat range)			
37	XTAL	Analog In	crystal oscillator pin or internal clock input pin, requires 100nF DC block capacitor in series between the pin and crystal			
38	PA6	GIO	General purpose I/O operating over full Vbat range or sensing input for short circuit protection			
39	PA7/PWM2	GIO	General purpose I/O operating over full Vbat range with PWM			
40	PB3	GIO	General purpose I/O operating over full Vbat range			
41	NU	NU	Not Used			
42	NU	NU	Not Used			
43	NU	NU	Not Used			
44	V5AN	Analog Out	5V voltage regulator output for external circuit and/or bypass capacitor			
45	PB0/LED/PWM1	GIO	General purpose I/O operating over full Vbat range, with PWM and LED driver			
46	PB5/AUX4	GIO	General purpose I/O operating over full Vbat range			
47	PB6	GIO	General purpose I/O operating over full Vbat range			
48	PB7	GIO	General purpose I/O operating over full Vbat range			
TAB	GND	Ground	Ground			

7.0 ELECTRICAL CHARACTERISTICS

7.1 ABSOLUTE MAXIMUM RATING

Absolute maximum ratings are defined in the following table. The operation of the device above these conditions may cause lasting damage and is not recommended.

Parameter	Conditions	Min.	Тур.	Max.	Unit
Vbat voltage		-0.3		+50	V
High voltage digital I/O input voltage	All GIO, SIO and SPIO pins configured as input	-0.3		Vbat+0.3	V
Low voltage digital I/O input voltage	configured as input (3V3IO), no damage	-0.3		V3p3DIG+0.3	V
3V Analog input voltage	Pins, XTAL	-0.3		V3p3AN+0.3	V
5V Analog input voltage	Pins, PON and USTX	-0.3		V5AN+0.3	V
Operating Temp.	de-rated performance, full functionality	-40		+85	°C
HBM (all pins)		-8		8	kV
CDM (all pins)		-800		800	V
MM (all pins)		-400		400	V

7.2 RECOMMENDED OPERATING CONDITIONS

Table 3 : Recommended Operating Conditions							
Parameter	Conditions	min	typ	max	unit		
Vbat voltage		9	12	45	V		
Operating Temp.		-40	25	85	°C		

7.3 CURRENT CONSUMPTION

Table 4 : Current Consumption									
Name	Min.	Тур.	Max.	Unit					
Sleep Mode	All circuits disabled, Xtal enable			300	μΑ				
CPU	fCPU=1MHz		100		μΑ				
Normal operation	CPU running, main RC as clock, CPU clock/8		1.4		mA				

8.0 DEVICE OVERVIEW

Figure 3 depicts a high-level block diagram of the device. The device subsystems are described in the following chapters.

Figure 3: BON Block Diagram

8.1 MICROCONTROLLER SUBSYSTEM

The BON device includes an embedded microcontroller subsystem, which is based on the ARM Cortex M0 core. It includes a program flash memory of 160kBytes, and an SRAM of 8kBytes. It includes three 32-bit timers, plus a dedicated watchdog timer. Additionally, it includes a **N**ested **V**ector Interrupt **C**ontroller (NVIC) to scheduled hardware interrupts, and a **W**akeup Interrupt **C**ontroller (WIC), which enable the control of the various power modes.

Further information can be obtained in the AyDeeKay document <<AyDeeKay_Core_160_8.pdf>>.

8.1.1 Timers (0,1, and 2)

BON implements three identical timers: Timer0, Timer1 and Timer2. These timers use the system clock as clock source and once activated count up continuously. They start from the value initially loaded into the counting register (32-bit) and, if enabled, generate an interrupt upon rolling over (0xFFFFFFF \rightarrow 0x00000000).

8.1.1.1 Timers Registers

There are two basic registers associated with each of three timers:

TMR0R	EG	0x50020000			0x0000000				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
T7	Т6	Τ5	T4	Т3	T2	T1	Т0		
T15	T14	T13	T12	T11	T10	Т9	Т8		
T23	T22	T21	T20	T19	T18	T17	T16		
T31	Т30	T29	T28	T27	T26	T25	T24		
MSB LSB									
Bit31-0	Bit31-0 T[31:0] : Timer Register initial value register.								

TMR0REG: 32-bit Timer initial value register

TMR0CTRL: Timer Control

TMR0CTRL		0x50020004			0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	TSTART	
MSB							LSB	
Bit0 TSTART : Timer enable bit. 0 = Timer not running 1 = Timer running								

TMR1REG: 32-bit Timer initial value register

TMR1REG		0x50020008			0x0000000			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Т7	Т6	Τ5	T4	Т3	T2	T1	Т0	
T15	T14	T13	T12	T11	T10	Т9	Т8	
T23	T22	T21	T20	T19	T18	T17	T16	
T31	T30	T29	T28	T27	T26	T25	T24	
MSB							LSB	
Bit31-0	Bit31-0 T[31:0] : Timer Register initial value register.							

TMR1CTRL: Timer Control

TMR1CTRL		0x5002000C			0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	TSTART
MSB							LSB
Bit0 TSTART : Timer enable bit. 0 = Timer not running 1 = Timer running							

TMR2REG: 32-bit Timer initial value register

TMR2REG		0x50020010			0x0000000			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
T7	Т6	Τ5	T4	Т3	T2	T1	Т0	
T15	T14	T13	T12	T11	T10	Т9	Т8	
T23	T22	T21	T20	T19	T18	T17	T16	
T31	Т30	T29	T28	T27	T26	T25	T24	
MSB							LSB	
Bit31-0	Bit31-0 T[31:0] : Timer Register initial value register.							

TMR2CTRL: Timer Control

TMR2CTRL	0x50020014			0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	TSTART
MSB							LSB
Bit0 TSTART : Timer enable bit. 0 = Timer not running 1 = Timer running							

8.1.1.2 Timer Operation

The operation of the timers is quite straightforward. Load the initial counter register, enable the timer and either check (polling mode) the current value of the counter register or enable the interrupt and process it inside the interrupt service routine.

<u>Note</u>: Inside the interrupt the application code must reload the timer counting register.

8.1.2 Watch Dog Timer

BON implements a WDT (**W**atch **D**og **T**imer) that can operate in one of two basic ways: Interrupt Mode: In the event of a WDT rollover an interrupt will be generated. Reset Mode: In the event of a WDT rollover the microcontroller will reset.

8.1.2.1 WDT Registers

The Watch Dog Timer implements two 32-bit registers:

WDTC	TRL		0x50020018			0x000000x		
Reser	ved	Reserved	Reserved	R/W	R/W	R/W	R/W	
-		-	-	WDTPRES1	WDTPRES0	RSTFLAG	RESETEN	WDTEN
-		-	-	-	-	-	-	-
-		-	-	-	-	-	-	-
-		-	-	-	-	-	-	-
MS	В							LSB
Bit4-3	WD1	PRES1: WD	TPRESO: WDT	Prescaler:				
	00 =	2 ¹³ /SystemCl	ock					
	01 =	2 ¹⁹ /SystemCl	ock					
	10 =	2 ²² /SystemCl	ock					
		2 ³² /SystemCl						
Bit2	RST	FLAG: Reset	Flag. This flag	g is set by the s	ystem at the ini	tialization if th	e initialization	was
	caus	ed by a reset	triggered by th	ne WDT. The bi	t can be de-ass	serted by the a	application.	
Bit1	RES	ETEN: Reset	enable. If ena	bled a WDT tim	ne-out will force	the microcon	troller to reset	t. This
	bit can be asserted but it cannot be de-asserted.							
Bit0 WDTEN : WDT enable. This bit can be asserted but it cannot be de-asserted. It means that once								
the WDT is enabled it cannot be turned off until a Reset or Power-On Reset occurs.								
	For instance, a system running from a 30MHz Crystal with WDTPRES[10] = 10 will trigger the WDT after approximately 0.14seconds if not cleared properly and in time by the application.							

WDTCTRL: WDT (Watch Dog Timer) Control Register. (32-bit)

WDTCLR: WDT Clear Register. (32-bit)

WDTCLR			0x5002001C		0x000000x		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
WCLR7	WCLR6	WCLR5	WCLR4	WCLR3	WCLR2	WCLR1	WCLR0
WCLR15	WCLR14	WCLR13	WCLR12	WCLR11	WCLR10	WCLR9	WCLR8
WCLR23	WCLR22	WCLR21	WCLR20	WCLR19	WCLR18	WCLR17	WCLR16
WCLR31	WCLR30	WCLR29	WCLR28	WCLR27	WCLR26	WCLR25	WCLR24
MSB							LSB

Bit31-0 **WCLR[31:0]**: Clear Register. To clear the WDT counting the following words must be written in this order and without any other instruction between then:

0x3C570001

0x007F4AD6

Warning: Programming WDTCLR with other values or in the wrong order will cause the watchdog to throw an interrupt or reset the system.

8.1.3 Interrupt Vectors

BON implements an interrupt vector defined in the following table:

Table 5 : Interrupt Vector Table					
Cortex M0 Specific Exceptions					
Name	Number	Comments			
HardFault_IRQn	-13	HardFault handler*			
SVCall_IRQn	-5	Supervisory call*			
PendSV_IRQn	-2	Interrupt-driven request for system level service*			
SysTick_IRQn	-1	SysTick Timer interrupt			
	·	Cortex M0 Specific Exceptions			
Name	Number	Comments			
BrownOut_IRQn	0	Brownout detection interrupt			
ClkMon_IRQn	1	Clock monitor interrupt			
-	2	RESERVED			
PIN_IRQn	3	Pin change interrupt			
-	4	RESERVED			
-	5	RESERVED			
I2C_Collision_IRQn	6	I ² C Collision detection interrupt			
I2C_IRQn	7	I ² C event interrupt			
UART_IRQn	8	UART event interrupt			
LIN_IRQn	9	LIN event interrupt			
SPI_IRQn	10	SPI event interrupt			
-	11	RESERVED			
-	12	RESERVED			

IRQ13_IRQn to IRQ15_IRQn	13-15	RESERVED
TIMER0_IRQn	16	Timer0 interrupt
TIMER1_IRQn	17	Timer1 interrupt
TIMER2_IRQn	18	Timer2 interrupt
WATCHDOG_IRQn	19	Watchdog timer interrupt

*Note: For more information see *Cortex-M0 Devices* – *Generic Users Guide* (*ARM DUI 0497A (ID112109)*) at: <u>http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/DUI0497A_cortex_m0_r0p0_generic_ug.pdf</u>

8.2 LIN

The BON device contains digital hardware, which implements a LIN 2.0 serial communications interface.

8.2.1 LIN Interface

BON implements a LIN (Specification 2.0) interface. Its main characteristics are:

- Configurable for support of both master or slave functionality
- Programmable data rate between 1 Kbit/s and 20 Kbit/s (for master)
- Automatic bit rate detection (for slave)

8.2.1.1 LIN Usage Description

BON implements a LIN (Local Interconnect Network) peripheral. This implementation is compatible with the specification 2.0 and allows for the selection of both Master and Slave modes.

8.2.1.1.1 Data Length Control

The host controller has to define the length of the data field of the current LIN frame by adjusting the LINLENGTH register. If the data length bits[3:0] are loaded with the value "1111b" the length of the data field is decoded from Bit 5 and 4 of the identifier register (LINID) according to table below (e.g. compatibility to LIN specification 1.1). Otherwise the amount of data bytes can be written directly to the DATA_LENGTH[3:0] register (supported values are 0...8).

Table 6 - ID bits and number of bits						
ID (Bit 5)	ID (Bit 4)	Number of Bytes in the data field				
0	0	2				
0	1	2				
1	0	4				
1	1	8				

8.2.1.1.2 Timing Settings for "Wake Up Repeat Time" and "Bus Inactivity Time"

The time for repeating of wake up because of no reaction on the bus and to go to sleep because of inactivity on the bus can be optionally written by the application in registers LINTIMING:

Table 7 - LIN Inactivity Time					
LINIT[1:0]	LIN Inactivity Time (sec.)				
00	4				
01	6				
10	8				
11	10				
10	8 10				

Table 8 - LIN Wake-Up Repeat Time					
LINWPR1 [1:0] LIN Wake-Up Repeat Time (msec.)					
00	180				
01	200				
10	220				
11	240				

8.2.1.1.3 Bit Time Settings

The Bit rate of the LIN system has to be defined in the bit timing registers (LINBITDIV and LINBITMUL). The table below shows an overview of the registers.

Table 9 - LIN Timing Related Registers					
Name	Description	Width(bits)			
LINDIV[8:0]	Bit time divider integer value	9			
LINMUL[4:0]	Bit time multiplier (master only)	5			
LINDFRAC[2:0]	Bit time divider fraction value (master only)	3			

The LIN bit rate *f*bit can be calculated from system clock *f*clk and bit timing registers according to the following equation.

$$Fbit = \frac{Fclk}{2* (LINDIV + LINDFRAC/8)* (LINMUL+1)}$$

The procedure of adjusting the bit timing registers is different between master and slave.

8.2.1.1.4 Bit Timing Register Adjustment of Master

The steps for adjusting the bit timing registers of the master are explained in the following.

1. Setting up the bit time multiplier depending on used LIN data rate *f*bit according to the following equation:

$$LINMUL = \frac{20 \text{KBits/sec}}{Fbit} - 1$$

The value has to be rounded down to the next integer value.

1) Adjusting the bit time divider integer value depending on system clock, data rate and bit time multiplier according to the following equation:

$$LINDIV = \frac{Fclk}{2*(LINMUL+1)*(Fbit)}$$

The value has to be rounded down to the next integer value.

1.0 Adjusting the bit time divider fraction value depending on system clock, data rate, bit time multiplier and bit time divider integer according to the following equation:

$$LINDFRAC = \left(\frac{Fclk}{2*(LINMUL+1)*Fbit} - LINDIV\right)*8$$

The value has to be rounded down to the next integer value.

The table below shows sample values of the bit timing registers for different LIN data rates.

Table 10 - LIN Timing Related Registers							
System Clock	LIN data rate	LINDFRAC					
	19.2 Kbit/s	0	93	1			
3.58 MHz	9.6 Kbit/s	1	93	1			
	1 Kbit/s	19	89	4			

8.2.1.1.5 Bit Timing Register Adjustment of Slave

The steps for adjusting the bit timing registers of the LIN slave are explained in the following paragraphs.

Note: Register fields **LINMUL** and **LINDFRAC** do not exist in the slave. The LIN core slave synchronizes to any bit rate between 1 Kbit/s and 20 Kbit/s. Nevertheless, the bit timing registers have to be adjusted to adapt the LIN core to the used system clock frequency. Adjusting the bit time divider integer value depending on system clock according to the following equation:

$$LINDIV = \frac{Fclk}{40K}$$

For a system clock of 3.58MHz LINDIV = 89.5 = 89. (Always rounded down)

8.2.1.2 Control of the LIN Module

The first step before transmitting messages with the LIN core is setting up the bit rate of the LIN system. For that, the host controller has to load the bit time registers, which has been explained in the previous sections. After that, the message transfer can be started. Controlling LIN core master and LIN core slave by the application is explained in the following.

8.2.1.2.1 Controlling the LIN Master

The master is responsible for the schedule of the messages. It sends the header of each frame that contains SYNC BREAK FIELD, SYNC FIELD and IDENTIFIER FIELD. The steps for scheduling a message frame are explained in the following.

- 1. The following steps have to be done by the application when an interrupt is requested.
- Check the LIN_ERR bit (LINSTATUS). Perform error handling and proceed to step d if bit ERROR is set, otherwise proceed to step b.
- Check the LIN_WAKEUP bit (LINSTATUS) it is set if the master has received or transmitted a wakeup signal. Proceed with the step d if LIN_WAKEUP is set else proceed with step c.
- Check the LIN_CMPLT (LINSTATUS) it is set if the transfer was successful. If LIN_CMPLT is set and the current frame was a receive operation load the received data from the data buffer.
- Set the LIN_RST_INT and LIN_RST_ERROR bits (LINCONTROL) register to reset the interrupt request and the error flags.

8.2.1.2.2 Controlling the LIN Slave

The LIN core slave detects the header of the message frame sent by the LIN master and synchronizes its internal bit time to the master bit time. An interrupt is requested after the reception of the IDENTIFIER FIELD, after the reception of a wakeup signal (if the slave is in sleep mode), when an error is detected or when the message transfer is completed.

The following steps have to be done by the application when an interrupt is requested.

- Check the LIN_DATA_REQ bit (LINSTATUS) (it is 1 when the IDENTIFIER FIELD has been received). Proceed with the following if LIN_DATA_REQ is set else proceed with step 2.
 - Load the identifier from the LINID register and process it.
 - Adjust the **LINTX** bit (1 if the current frame is a transmit operation for the slave, 0 if the current frame is a receive operation for the slave).
 - Load the data length in the **LINLENGTH** register (number of data bytes or value "1111b" if the data length should be decoded from the identifier) and set the checksum type (enhanced or classic).
 - Load the data to transmit into the data buffer (for transmit operation only).
 - Set the LINACK bit (LINCONTROL) register.

Note 1: Steps <u>a</u> thru <u>e</u> have to be done during the IN-FRAME RESPONSE SPACE, if the current frame is a transmit operation for the slave; otherwise a timeout will be detected by the master. If the current frame is a receive operation for the slave, steps <u>a</u> thru <u>e</u> have to be finished until the reception of the first byte after the IDENTIFIER FIELD. Otherwise, the internal receive buffer of the slave core will be overwritten and a timeout error will be detected in the slave core.

Note 2: If the application of the slave detects an unknown identifier (e.g. extended identifier = 0x3E) it has to write a 1 to bit **LIN_SLAVE_STOP** (**LINCONTROL**) instead of setting the **LINACK** bit (steps <u>b</u> thru <u>e</u> can be skipped). In that case the LIN core slave stops the processing of the LIN communication until the next SYNC BREAK is received.

1. Check the LIN_ERR (LINSTATUS). Perform error handling and proceed with step 6 if bit LIN_ERR is set else proceed with step 3.

Note 3: Bit **LIN_TOUT_ERR** and bit **LIN_WAKEUP** are set if the slave has sent a wakeup signal but the master did not respond within 150 ms.

- 2. Check bit LIN_IDL_TOUT (LINSTATUS) is set and activate the sleep mode by setting bit LINSLEEP if it is.
- 3. Check bit LIN_WAKEUP it is set if the slave has received a wakeup signal. If LIN_WAKEUP is set proceed with step 6 else proceed with step 5.

Note 4: Bit **LIN_CMPLT** is not changed when a wake-up signal is transmitted or received. Therefore, bit **LIN_WAKEUP** has to be checked before bit **LIN_CMPLT**.

- 3. Check LIN_CMPLT bit in the LINSTATUS register (it is set if the transmission was successful). If LIN_CMPLT is set and the current frame was a receive operation for the slave, load the received data bytes from the data buffer.
- 4. Set the bits **LIN_RST_INT** and **LIN_RST_ERR** in the control register to reset the interrupt request and the error flags.

8.2.1.2.3 Sleep Mode and Wakeup

To reduce the systems power consumption the LIN Protocol Specification defines a Sleep Mode. The message used to broadcast a Sleep Mode request has to be started by the host controller of the LIN core master in the same way as a normal transmit message. The host controller of the LIN core slave has to decode the Sleep Mode Frame from Identifier and data bytes. After that, it has to put the LIN slave node into the Sleep Mode by setting bit **LINSLEEP** in the control register. If bit **LINSLEEP** in the control register of the LIN core slave is not set and there is no bus activity for 4 s to 10 s (specified bus idle timeout) bit **LIN_IDL_TOUT** is set and an interrupt request is generated. After that application may assume that the LIN bus is in Sleep Mode and set bit **LINSLEEP** in the **LINCONTROL** register of the LIN core slave. The bus inactivity time which should be defined as bus idle timeout for the slave can optionally set to values 4s, 6s, 8s or 10s as possible accordingly with specification 2.0.

Sending a Wakeup signal with the master or any slave node terminates the Sleep Mode of the LIN bus. To send a Wakeup signal, the host controller of the LIN core has to set the bit **LIN_WAKEUP** in the **LINSTATUS** register. After successful transmission of the wakeup signal with the LIN core master the **LIN_WAKEUP** bit in the **LINSTATUS** register of the sending LIN core master is set and an interrupt request is generated. The LIN core slave does not generate an interrupt request after successful transmission of the Wakeup signal but it generates an interrupt request if the master does not respond to the Wakeup signal within 150 msec. to 250 msec. This value can be set optionally to 180ms, 200ms, 220ms or 240ms as it is possible accordingly with specification 2.0. In that case, bit **LIN_ERR** and bit **LIN_TOUT_ERR** are set. The host controller has to decide whether to transmit another Wakeup signal or not.

All LIN cores that detect a wakeup signal will set the bit LIN_WAKEUP and generate an interrupt request to their host controller. The inverted bit LINSLEEP is connected to the output LIN_TR_EN. Bit LINSLEEP is automatically reset and LIN_TR_EN (whose polarity can be flipped by setting/clearing LINTRAN) is set to high when the LIN core detects a wakeup signal. Output LIN_TR_EN may be used for connecting the enable signal of the LIN transceiver. It depends on the transceiver type whether this is possible or not.

8.2.1.2.4 Error Detection and Handling

The LIN core generates an interrupt request and stops the processing of the current frame if it detects an error. The application has to check the type of error by processing the LINERROR register. After that, it has to reset the LINERROR register and the LIN_ERR bit in status register by writing a 1 to bit LIN_RST_ERR in control register. Starting a new message with the LIN core master or sending a Wakeup signal with master or slave is possible only if bit LIN_ERR in LINSTATUS register is 0.

8.2.1.3 LIN Registers

The following registers are available:

LIN_DA	TAn	0x5000	0030/1/2/3	3/4/5/6/7	0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
LDT7	LDT6	LDT5	LDT4	LDT3	LDT2	LDT1	LDT0	
MSB							LSB	
Bit7-0 LDT7-LDT0: LIN data bits								

LIN_DATAn: LIN data registers. (n = 0, 1, ..., 7)

LINCTRL: LIN control register.

LINCTRL	INCTRL 0x50000038		0x00				
W	R/W	R/W	R/W	W	W	R/W	R/W
LINSTOP	LINSLEEP	LINTX	LINACK	LIN_RST_INT	LIN_RST_ERR	LIN_WKUP_ REQ	LIN_START_R EQ
MSB							LSB

INDIE

	LINSTOP: LIN Stop command (slave only): The host has to write a '1' to this bit if it handles a data t interrupt and cannot make use of the frame content with the received identifier (e.g. extended identifiers). For the LIN slave stops the processing of the LIN communication until the next SYNC BREAK is detected.
	0 = No action
	1 = STOP
Bit6	LINSLEEP: LIN Sleep command: The bit is used by the LIN core to determine whether the LIN bus is in Sleep Mode or not. The application has to set the bit after sending or receiving a Sleep Mode frame or if a bus idle timeout interrupt is requested. The bit will be reset by the LIN core, when a wakeup signal is detected.
	0 = LIN interface is not in sleep mode
	1 = LIN interface is in sleep mode
Bit5	LINTX: LIN transmit command: The bit determines whether the current frame is a transmit frame or a receive frame for the LIN node. It has to be set by the application.
	0 = LIN interface is receiving
	1 = LIN interface is transmitting
Bit4	LINACK: LIN data acknowledge (slave only): The bit has to be set by the application after handling a data request interrupt (compare bit LIN_DT_REQ in LINSTATUS register). The bit will be reset by the LIN core.
	0 = Acknowledge not requested or already reset by core
	1 = LIN interface acknowledge request
Bit3	LIN_RST_INT: LIN reset interrupt: The application has to write a '1' to this bit to reset the LIN_INT_REQ bit in the LINSTATUS register.
	0 = No Interrupt reset request
	1 = Reset of interrupt request
Bit2	LIN_RST_ERR: LIN reset error: The application has to write a '1' to this bit
	to reset the error bits in status register and error register.
	0 = No errors reset request
	1 = Errors reset request
Bit1	LIN_WKUP_REQ: LIN Wake-Up request: The bit has to be set by the application to
	terminate the Sleep Mode of the LIN bus by sending a Wakeup signal. The bit will be reset by the LIN core.
	0 = No wake-up request
	1 = Wake-up request
Bit0	LIN_START_REQ: LIN start request (master only):
	The bit has to be set by the application to start the LIN transmission after loading Identifier, data length and data buffer. The LIN core will reset the bit after the transmission is finished or an error is occurred.
	0 = No action
	1 = Start Transmission

LINSTATUS: LIN status register.

LINST	ATUS			0x50000039			0x00	
V	V	R/W	R/W	R/W	W	W	R/W	R/W
LINAC	CTIVE	LIN_IDL_TOUT	LINABRT	LIN_DT_ REQ	LIN_INT_ REQ	LIN_ERR	LIN_WAKEUP	LIN_CMPLT
MS	SB							LSB
Bit7	LINA	CTIVE: LIN active:	The bit indicat	es whether th	ne LIN bus is a	active or not.		
	1 = Ti	ransmission on the	LIN bus is act	ive				
	0 = N	o LIN bus activity						
		LIN slave, this bit is dit is dit is bit is bit is bit is do f the transmissio						
Bit6	LIN_I	DL_TOUT: LIN idle	timeout (slav	e only):				
	In add	bit is set by the LIN dition, an interrupt re leep mode and it ha	equest is gene	erated in that	case. After th	at, the applica		
	0 = N	O sleep mode cond	ition detected					
	1 = S	leep mode conditior	n detected					
Bit5	LINABRT: LIN aborted (slave only):							
	timeo proce	bit is set by the LIN ut or bit error (cau ssing of the currer ad by the LIN core a	ised e. g. by it frame has	a new sync been stoppe	break after d by writing a	missing data a '1' to bit ST	bytes). The bit is OP in control regi	also set if the
	0 = LI	N transmission NO	T aborted					
	1 = LI	N transmission abo	rted					
Bit4	LIN_[DT_REQ: LIN data	request (slave	only):				
	applic has to	IN core slave sets cation has to decode o adjust the LINTX he data buffer too.	e the Identifier bit in the con	to decide wh trol register a	nether the curr and to load the	rent frame is a e data length.	transmit or a rece For transmit oper	ive operation. I ations it has to
	0 = N	o data requested						
	1 = D	ata requested						
Bit3	LIN I	NT_REQ: LIN inter	rupt request:					
-	The L	IN core sets the bit RST_INT in the cont	t when it send	ls an interrup	ot. The bit has	to be reset b	y the application b	y setting the bi
	0 = N	o Interrupt request						
	1 = In	terrupt requested						
Bit2	LIN_ERR: LIN error:							

Indie

The LIN core sets the bit if an error has been detected (compare error register). The bit has to be reset by the host controller by setting the bit LIN_RST_ERR in the control register.

0 = No errors

1 = Errors detected

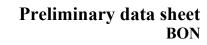
Bit1 LIN_WAKEUP: LIN Wake-up:

The bit is set when the LIN core is transmitting a Wake-up signal or when the LIN core has received a Wakeup signal.

0 = No wake-up

1 = Wake-up signal

Bit0 LIN_CMPLT: LIN complete:


The LIN core will set the bit after a transmission has been successfully finished and it will reset it at the start of a transmission.

0 = Transmission started

1 = Last transmission succeeded

LINERROR: LIN error register.

				0x5000003A	λ		0.00			
LINER	ROR				Γ	0x00				
Reser	ved	Reserved	Reserved	Reserved	R	R	R	R		
-		-	-	-	LIN_PARITY _ERR	LIN_TOUT_ ERR	LIN_CHK_E RR	LIN_BIT_ERR		
MSI	В							LSB		
Bit3	LIN	_PARITY_ER	R: LIN parity e	error: Identifier	parity error. (Sla	ive only)				
	0 =	No parity erro	r identified							
	1 =	Parity error ide	entified							
Bit2	LIN_TOUT_ERR: LIN timeout error: There are several reasons that can cause a timeout error: The master detects a timeout error if it is expecting data from the bus but no slave does respond. If the slave responds to late and the frame is not finished within the maximum frame length TFRAME_MAX a timeout error will be detected too. The slave detects a timeout error if it is requesting a data acknowledge to the host controller (for selecting receive or transmit, data length and loading data) and the host controller does not set the bit DATA_ACK or bit STOP in control register until the end of the reception of the first byte after the identifier. The slave detects a timeout error if it has transmitted a wakeup signal and it detects no sync field (from the master) within 150 ms.									
	0 =	No timeout eri	ror							
		Timeout error								
	<u>Note</u> : The slave does not perform an exact check of the frame length TFRAME_MAX but a timeout is detected after 200 bit times if the slave is in receive mode and there are missing data fields or a missing ID field from the master.									
Bit1	LIN	_CHK_ERR: I	IN checksum	error:						
	0 =	No checksum	error							
	1 =	Checksum err	or							

Bit0 LIN_BIT_ERR: LIN bit error: The bit transmitted does not match the one read.

0 = No bit error

1 = Bit error

LINLENGTH: LIN data length, checksum mode and transceiver polarity.

LINST	ATUS			0x5000003B		0x00			
R/V	N	R/W	Reserved Reserved		R/W	R/W	R/W	R/W	
LINC	нк	LINTRAN	-	-	LINDLEN3	LINDLEN2	LINDLEN1	LINDLEN0	
MS	MSB					LSB			
Bit7 Bit6	0 = Classic Checksum 1 = Enhanced Checksum								
	1 = Tra	nsceiver enal	ble signal active	low					
Bit3-0	Bit3-0 LINDLEN: LIN data length: The application has to define the length of the data field of the current LIN frame by adjusting the LINDLEN[3:0] bits. If the bits are loaded with the value "1111b" the length of the data field is decoded from Bit 5 and 4 of the identifier register "id" according to the table below (e.g. compatibility to LIN specification 1.1). Otherwise the amount of data bytes can be written directly to the register (supported values are 08). Table 11- LIN data length (when the length bits have the value "1111b")								
			ID Bit	5	ID Bit 4	Num	ber of Bytes		
			0		0		2		
			0		1		2		
			1		0		4		
			1		1		8		

LINBITDIV: LIN Bit Divider

LINBITDIV			0x5000003C	;	0x00				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
LINDIV7	LINDIV6	LINDIV5	LINDIV4	LINDIV3	LINDIV2	LINDIV1	LINDIV0		
MSB							LSB		
Bit7-0 LIND	Bit7-0 LINDIV[7:0]: LIN bit divider.								

LINBITMUL: LIN Bit Divider

LINBITMUL		0x5000003D			0x7F				
Reserved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W		
-	-	LINMUL4	LINMUL3	LINMUL2	LINMUL1	LINMUL0	LINDIV8		
MSB							LSB		
Bit5-1 LINMUL[4:0]: LIN bit multiplier: Bit0 LINDIV[8]: LIN divider bit8									

LINID: LIN ID.

LINID		0x5000003E			0x00										
Reserved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W								
-	-	LINID5	LINID4	LINID3	LINID2	LINID1	LINID0								
MSB							LSB								
Bit5-0 LINI	I D[5:0]: LIN i	d.					Bit5-0 LINID[5:0]: LIN id.								

LINTIMING: LIN timing.

LINTIMI	IG	0x5000003F			0x00			
R/W	R/W	R/W	R/W	R/W	R/W			
LINMS	LINDFRAC2	LINDFRAC1	LINDFRAC0	LINIT1	LINIT0	LINWPR1	LINWPR0	
MSB							LSB	
Bit7 LINMS: LIN Master/Slave selection:								
	0 = Slave							
	1 = Master							
Bit6-4	LINDFRAC[2:0]:	LIN fractional divi	der.					
Bit3-2	2 LINIT[1:0]: LIN inactive time.							
Bit1-0	LINWPR[1:0]: LIN wake-up repeat time.							

8.3 UART

BON implements a UART (Universal Asynchronous Receiver Transmitter) module. The main characteristics are defined below:

- Four bytes deep reception FIFO (First In First Out) with "watermark" selectable to one and three bytes
- Four bytes deep transmission FIFO (First In First Out)
- Interrupt available for transmission, reception and error events
- Reception timeout timer
- Programmable break reception and transmission
- Programmable parity with "sticky" parity option
- Selectable number of bits from 5 to 8
- Selectable number of stop-bits: 1, 1 ¹/₂, 2
- Programmable loop-back
- Swappable TXD and RXD (PD[4] and PD[5])
- Transmitter Polarity selection

8.3.1 UART Operation

The UART protocol requires two wires (UTXD and URXD). Port D[5:4] are configured as UTXD and URXD when the MDUART bit is set in PORTEOE register. In order to use it the following steps must be followed:

1. Select the pins position (normal or swapped) of the interface and also its polarity. The normal position (not swapped) is TX=PD[5] and RX = PD[4].

2. Define the following parameters:

- a. Loop back: Used mainly in tests, internally connects the output to the input.
- b. Break enable: Puts the output down while asserted, rising the output once de-asserted.
- c. Sticky parity: Forces the parity to stay stable in one direction.
- d. Even/Odd parity selection and enable: Selection and enable of Even or Odd parity bits.
- e. Number of stop bits: Selection of 1 (default), 1¹/₂ (5-bit communications only) or 2 stop bits.
- f. Data size in bits (5,6,7,8): Selection of the number of bits used in the communication
- 3. Define the baud rate. The baud rate is calculated as follows: (UARTDIV is a 16-bit register)

$$Baud = \frac{Fclk}{16*(UARTDIV+1)}$$

Assuming a 3.579545MHz system clock the following table provides some register values, baud rates and related errors:

Table 12 - UART baud rates, divider values and errors								
Baud	UARTDIV	Real Baud	Error (%)					
300	745	299.9	0.04					
600	372	599.8	0.04					
1200	185	1203	0.23					
2400	92	2406	0.23					
4800	46	4760	0.83					
9600	22	9727	1.3					
19200	11	18644	2.9					
38400	5	37287	2.9					
57600	3	55930	2.9					
115200	1	111861	2.9					

4. Enable the UART and its interrupt: The UART may generate an interrupt for events related to:

- 1. Transmission completed.
- 2. Reception: Timeout of ~40 bit-times without reception, and data received (one or three bytes received, programmable).
- 3. Errors detected: Framing error, parity error, and overrun error.
- 4. Break signal detected (received).

8.3.2 UART Registers

The following registers are defined in BON:

UARTDATA:	UART data.
-----------	------------

UARTDATA		0x50000010			0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
UARTD7	UARTD6	UARTD5	UARTD4	UARTD3	UARTD2	UARTD1	UARTD0
MSB							LSB
Bit7-0 UARTD [7:0]: UART data, both received and to be transmitted.							

UARTICR: UART Interrupt Control Register.

UARTI	UARTICR			0x50000011			0x00	
R		R	R	R	R/W	R/W	R/W	R/W
UISTI	rs3	UISTTS2	UISTTS1	UISTTS0	UTOUTIEN	URXERREN	UTXIEN	URXIEN
MS	В							LSB
Bit7-4	UIS	TTS [3:0]: UA	RT Interrupt	status:	I			
	0001 = No Interrupt asserted							
	001) – Transmiss	sion complete	d				
	0010		son complete	u				
	010) = Data recei	ived					
	0110) = Reception	error					
	440	D - Decention	time =	h:t t:				
	1100	J = Reception	timeout (~40	bit-time)				
Bit3	UTC	DUTIEN: UAR	T time-out int	errupt enable	bit:			
	0 =	Time-out inter	rupt disabled					
	1 = 1	Time-out inter	rupt enabled					
Bit2	UR)	KERREN: UA	RT reception	error interrup	t enable bit:			
	0 =	Reception erro	or interrupt di	sabled				
	1 =	Reception erro	or interrupt er	abled				
Bit1	UTX	(IEN : UART tr	ansmission c	ompleted inte	errupt enable bit	t:		
	0 =	Transmission	completed in	terrupt disable	ed			
	1 = Transmission completed interrupt enabled							
Bit0	URX	(IEN : UART r	eception inter	rupt enable b	it:			
	0 =	Reception inte	errupt disable	d				
	1 = Reception interrupt enabled							

UARTCTRL: UART Control Register.

UART	JARTCTRL			0x50000012			0x00	
R/\	N	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ULOO	PEN	UBREAKE N	USTICKEN	UPARITY	UPAREN	USTOP	USTOP	USIZE
MS	в							LSB
Bit7	ULOC	OPEN: UART I	oop back enab	le:				
	0 = U	ART loop back	disabled					
	1 = U.	ART loop back	enabled					
Bit6	UBREAKEN: UART break enable:							
	0 = UART break disabled							
	1 = U	ART break ena	abled					
Bit5	USTI	CKEN: UART :	sticky parity en	able bit:				
	0 = S	ticky parity disa	abled					
	1 = S	ticky parity ena	abled					
Bit4	UPAF	RITY : UART pa	arity bit:					
	0 = O	dd parity						
	1 = E [,]	ven parity						
Bit3	UPAF	REN : UART pa	rity enable bit:					
	0 = Pa	arity disabled						
	1 = Pa	arity enabled						
Bit2	USTO)P : UART stop	bit:					
	0 = O	ne stop bit						
	1 = If	a 5-bit transmi	ssion it selects	1.5 stop bits, c	otherwise 2 stop	o bits (6, 7 and	8 bits)	
Bit1-0		E: UART trans	mission size:					
		5-bit data						
		6-bit data						
		7-bit data						
	11 = 8	8-bit data						

UARTCTRL1: UART Control Register1.

UART	CTRL1		0x50000013				0x00		
Rese	erved	Reserved	Reserved	Reserved	R/W	R/W	R/W	R/W	
-				-	UARTEN	URXFS	UTXFRST	URXFRST	
M	MSB							LSB	
Bit3	UAR	FEN : UART en	able:						
	0 = U	ART disabled							
	1 = U	ART enabled							
Bit2	URXI	S: UART RX	FIFO interrupt	evel:					
	0 = U	ART interrupts	after one byte received						
	1 = U	ART interrupts	after three byt	es received					
Bit1	UTXF	RST : UART tr	ansmission FIF	O reset bit:					
	0 = T	X FIFO not res	et						
	1 = T	X FIFO reset							
Bit0	it0 URXFRST: UART reception FIFO reset bit:								
	0 = R	X FIFO not res	set						
	1 = R	X FIFO reset							

UARTDIV: UART Baud rate divider. (16-bit)

UARTDIV		0x50000016			0x0000		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
UDIV7	UDIV6	UDIV5	UDIV4	UDIV3	UDIV2	UDIV1	UDIV0
UDIV15	UDIV14	UDIV13	UDIV12	UDIV11	UDIV10	UDIV9	UDIV8
MSB							LSB
Bit15-0 UDI	/ [15:0]: UAR	T clock divide	er				

UARTSTATUS: UART Control Register1.

UARTS	STATU	S		0x50000014			0x00	
R/W	/W R/W		R/W	R/W	R/W	R/W	R/W	R/W
UERR		UTXEMPT Y	UTXFFEMP TY	UBREAKIN T	UFRMERR	UPRTYER R	UOVRUNE RR	UDTRDY
MSB								LSB
Bit7	UER	R: UART error:						
	0 = N	o error						
	1 = E	rror in UART						
Bit6	UTXE	MPTY: UART	transmission e	empty:				
	0 = U	ART transmitte	er not empty					
	1 = U	ART transmitte	er empty					
Bit5	UTXF	FEMPTY: UA	RT transmissio	n FIFO empty:				
	0 = T	X FIFO not em	pty					
	1 = T	X FIFO empty						
Bit4	UBRI	EAKINT: UAR	T break interrup	ot:				
	0 = N	o break interru	ipt					
	1 = B	reak interrupt						
Bit3		MERR: UART f	-					
		ART no framin	-					
		ART framing e						
Bit2		TYERR: UART	parity error:					
		o parity error						
DIA		arity error						
Bit1			RT overrun erro	or:				
		o overrun erro	r					
Dito			to road					
Bit0		RDY: UART da	-					
		o data ready (r	• •					
L	i = D	ata ready (rece	eption)					

8.4 SPI INTERFACE

The Serial Peripheral Interface (SPI) is a synchronous full-duplex serial interface. It communicates in master/slave mode where the master initiates the data transfer. In BON, the SPI is implemented as a master. The module is compatible with Motorola SPI interface. There are many references available, and one of them is:

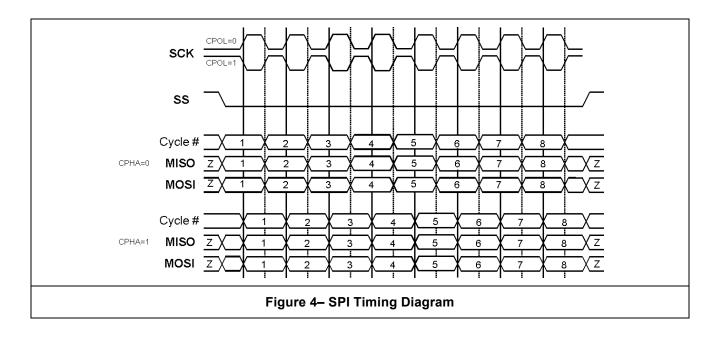
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

BON SPI module's main features are defined below:

- Compatible with Motorola SPI interface
- Four bytes deep reception FIFO
- Four bytes deep transmission FIFO
- Interrupt upon events related to transmission, reception and error:
 - Write Collision
 - Transmission FIFO full and empty
 - o Reception FIFO full and empty

The SPI protocol requires four wires (SCK, MISO, MOSI, and SS). Port D[3:0] are configured as the SPI bus when the MDSPI bit is set in PORTEOE register. The following table describes how each pin is connected:

Table 13 : SPI interface signals									
Name Pin Number Pin Name Comments									
MISO	18	PD0	3.3V						
MOSI	19	PD1							
SCLK	20	PD2							
SS (SPI-SSEL)	21	PD3							


8.4.1 SPI Functionality

Only the master mode is implemented in BON. BON configures the clock frequency and generates the serial clock (SCK) for the interface. The data transfer is synchronous through SCK. The SPI is a full-duplex system; data is transmitted and received simultaneously. BON sends the information to the slave device through MOSI line and receives the data through MISO line. CPOL and CPHA bits determine when to sample the data.

When CPOL=0, the base value of clock is logic '0'. In this case, if CPHA=0, data is captured on the rising edge of SCK and data is propagated on the falling edge of SCK. For CPHA=1, data is captured on the falling edge of SCK and data is propagated on the rising edge of SCK.

If CPOL=1, the base value of clock is logic '1'. In this case, if CPHA=0, data is captured on the falling edge of SCK and data is propagated on the rising edge of SCK. For CPHA=1, data is captured on the rising edge of SCK and data is propagated on the falling edge of SCK.

The timing diagram is shown below.

After a desired configuration is set through configuration registers, a transfer is initiated by writing to the Serial Peripheral Data Register (SPDR). The data is entered to 4-deep FIFO before it is actually transmitted. When the data is transmitted, the slave also transmits the data simultaneously for BON to receive. The received data is stored in a separate 4-deep FIFO. The data is accessed by reading SPDR register.

To operate it properly the following steps must be performed:

- 1. Configure and enable the SPI: Select if the interrupt is enabled, polarity, phase and the clock divider:
- 2. Enable the interrupt (microcontroller) if required:
- 3. Process Interrupt if required: Detect reason for the interrupt (error, transmission or reception related and act accordingly):

8.4.2 SPI Registers

The following registers are defined in the SPI interface:

SPCR: SPI Control Register.

SPCR		0x5	5000001C			0x10	
R/W	Reserved	Reserved	R	R/W	R/W	R/W	R/W
SINTE	SINTE			CPOL	SPH	SCKSTD1	SCKSTD0
MSB							LSB
	SINTE: SPI Inte	•					
	0 = Interrupt is	disabled					
	1 = Interrupt is	enabled					
Bit4	MSTR: Master	Mode Select B	Bit				
	SPI is always ir	n master mode	e in BON, a	and therefo	ore, it is a	lways set to log	gic '1'.
Bit3	CPOL SPI cloc	k polarity					
	0 = The base v	alue of the clo	ck is zero				
	1 = The base v	alue of the clo	ck is one				
Bit2	CPHA: SPI cloo	ck phase					
	0 = data is cap n to base	tured on clock	transition	from base	and data	a is propagated	d on the clock
	1 = data is captured on clock transition to base and data is propagated on the cloc ition from base					on the clock	
Bit1-0	-0 SCKSTD[1:0]: SPI standard clock divider selection						
	Please refer to	SPER registe	r for syster	n clock			

SPSR: SPI Status Register.

SPSR		(x5000001D			0x00	
R/W	R/W	Reserved	Reserved	R/W	R/W	R/W	R/W
SINTF SWCOL		-	-	STXFF	STXFE	SRXFF	SRXFE
MSB							LSB
Bit7	SINTF: SPI in	terrupt flag					
	0 = Interrupt r	ot asserted					
	1 = Interrupt a	sserted					
	SWCOL: SPI FIFO is full	write collisio	n is set whe	n the SPD	R register	is written t	o while the
	0 = No collisio	on					
	1 = collision						
Bit3	STXFF: SPI ti	ansmit FIFO full					
	0 = transmit F	IFO not full					
	1 = transmit F	IFO full					
Bit2	STXFE: SPI t	ransmit FIFO	empty				
	0 = transmit F	IFO not empty	/				
	1 = transmit F	IFO empty					
Bit1	SRXFF: SPI r	eception FIFC) full				
	0 = reception FIFO not full						
1 = reception FIFO full							
Bit0	SRXFE: SPI r	eception FIFC	empty				
	0 = reception FIFO not empty						
	1 = reception	FIFO empty					

SPDR: SPI Data Register.

SPDR		C	Ξ	0xXX				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
SPID7	SPID7 SPID6		SPID5 SPID4 SPID3		SPID2	SPID1	SPID0	
MSB							LSB	
Bit7-0 SPID[7:0] : SPI data, used in both transmission and reception								

SPER: SPI Extended Register

SPER			0x5000001F			0x00	
R/W	R/W	Reserved	Reserved	Reserved	R/W	Reserved	Reserved
SICNT	1 SINCT0	-	-	-	SPE	SCKEXT1	SCKEXT0
MSB							LSB
Bit7-6	SICNT[1:0]: SI	PI Interrupt Co	unter Bits				
	00 = SINTF is	set after every	completed tra	nsfer			
	01 = SINTF is	set after every	two completed	d transfers			
	10 = SINTF is	set after every	three complet	ed transfers			
	11 = SINTF is	set after every	four complete	d transfers			
Bit2	SPE: SPI Enab	ble					
	0 = SPI module	e is disabled					
	1 = SPI module	e is enabled					
Bit1-0	SCKEXT[1:0]:	SPI extended	clock divider				
	SCKSTD	SCKEXT	Result Clock Divider				
	00	00 = System Clock/2					
	01	00	= System (Clock/4			
	10	00	= System (Clock/16			
	11	00	= System (Clock/32			
	00	01	= System (Clock/8			
	01	01	= System (Clock/64			
	10	01	= System (Clock/128			
	11	01	= System (Clock/256			
	00	10	= System Clock/512				
	01	10	= System (Clock/1024			
	10	10	= System Clock/2048				
	11	10	= System Clock/4096				
	хх	11	= Reserved	d			

8.5 I²C INTERFACE

BON implements an I²C interface. Its main characteristics are:

- Support for multi-master mode
- General call support
- 10-bit address
- Address masking

The I²C interface is a well-known interface and many references that describe its behavior are available. As an example:

http://en.wikipedia.org/wiki/I%C2%B2C

8.5.1 I2C Functionality

BON's I²C must be configured for proper use.

8.5.1.1 Slave Mode

Slave Mode:

- 1. Select the peripheral as slave.
- 2. Select the address size.
- 3. Load the address.
- 4. Select if general call is to be supported.
- 5. Select address masking if required. If required the peripheral provides a 5-bit address mask for the lower 5 address bits. Each bit masks the corresponding bit in address comparison when set. For example, as an I²C Slave in 7-bit address mode is using 0x03 as mask and 0x36 as address Then the I²C will answer to all messages with addresses 0x34, 0x35, 0x36 or 0x37. Enable the interface and its interrupts if used.
- 6. Define the Interrupt handlers if required.

In the following paragraphs the several phases of the slave side of the communications will be described.

8.5.1.1.1 I²C Slave Access Sequence

Note: I²C address phases are always prefixed by Start or Repeated Start condition.

7-bit Address mode

The slave, once enabled, waits for an I^2C Start condition to happen. Once a Start condition is detected, the slave shifts in the next 8 bits into an internal shift register and the following actions take place:

The **IBUFF** bit is set.

If the address contained in the internal register matches the one from **I2CADDR0** the interface sends back an ACK and an interrupt is asserted.

At this moment the application must read the **I2CSTATUS** register and check the **IADDRR** and **IRWBUSY** bits.

The **IADDRR** should be '1' (address received).

The **IRWBUSY** will inform if the operation is a write ('1') or a read ('0').

After reading these bits the application must read the **I2CDATA** register to clear the buffer. The figures 1, 2 and 3 show how the process occurs.

If **IBUFF** is set before receiving the address or **IRBUFOVL** is set when receiving the address, then the slave will send NACK and issue an error interrupt to notify the application about these errors.

10-bit Address mode

Two address-byte receptions are required in this mode. The first byte shifted consists of '1 1 1 1 0 A[9] A[8] 0', where A[9:8] is the upper two bits of I^2C address.

The last bit, R1W0, must be 0 so the slave can receive another address byte. If the upper two address bits match then the Slave sends the ACK and asserts an interrupt.

The application must at this point read **I2CSTATUS** to check the **IADDRR** and **IRWBUSY**, which are 1 (address byte) and 0 (write operation). The user then needs to read **I2CDATA** to clear the buffer.

The second byte shifted into contains the address bits A[7:0]. In the same fashion if the lower 8 address bits match then the slave sends the ACK and asserts an interrupt.

The application reads **I2CSTATUS** to check the **IADDRR**, which is 1 (address byte). The user then needs to read **I2CDATA** to clear the buffer. Figure 8 shows an example of 10-bit address mode receiving timing waveform.

If it is an I²C read access, then after the two address-byte receptions the slave shall receive a Repeated Start condition and then the first address byte again with last bit R1W0 being 1. The slave sends The ACK bit and asserts an interrupt

The application reads **I2CSTATUS** to check **IBUFF** and **IRWBUSY**, which are 1 (address byte) and 1 (read operation). The user then needs to read **I2CDATA** to clear the buffer.

(Figure 9 shows an example of 10-bit address mode transmitting timing waveform.)

8.5.1.1.2 *I*²C Access Sequence – Write Data Phase

If the received R1W0 field is 0, it is an I²C write access and the slave remains in receiving mode. Every time the slave shifts in a byte, it sends the ACK bit as long as **IBUFF** is cleared before receiving the data and **IRBUFOVL** is cleared when receiving the data.

The slave also asserts an interrupt after receiving each byte from I^2C bus. The user needs to read **I2CSTATUS** for status checking and Then **I2CDATA** for data fetching. The write data phase is concluded when detecting a Stop or Repeated Start condition. (Figure 5, Figure 6, and Figure 8 show examples of I^2C write accesses)

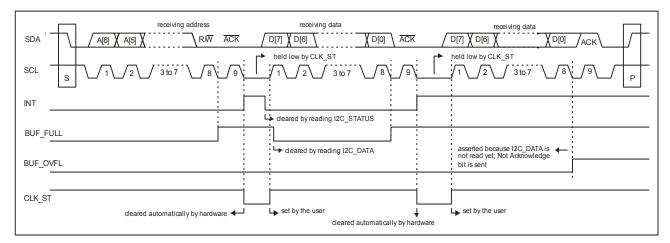


Figure 5 – Slave Mode Timing Waveform with CLK_ST_ENB = 1 (Reception, 7-bit Address Mode)

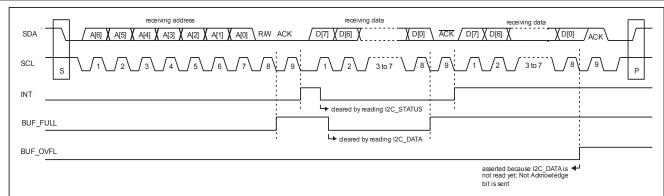


Figure 6 – Slave Mode Timing Waveform with CLK_ST_ENB = 0 (Reception, 7-bit Address Mode)

8.5.1.1.3 I²C Access Sequence – Read Data Phase

If the received R1W0 field is 1, it is an I^2C read access and the slave switches to transmitting mode.

Before each byte shift out process, **ICLKSTR** is cleared automatically to hold SCL low (clock stretching). The user needs to program **I2CDATA** with the byte to be transmitted and then set **ICLKSTR** to release SCL. Every time the slave shifts out a byte, it receives the ACK/NACK bit. If receiving the ACK bit, the slave clears **ICLKSTR** automatically, and the user needs to program **I2CDATA** and set **ICLKSTR** to resume transmission. If receiving the NACK bit, which means the Master device is done reading data, the Slave releases both SCL and SDA. The Slave asserts an interrupt after receiving the ACK/NACK bit. The read data phase is concluded when receiving the NACK bit or detecting Repeated Start or Stop condition. Figure 7 and show examples of I²C read accesses.

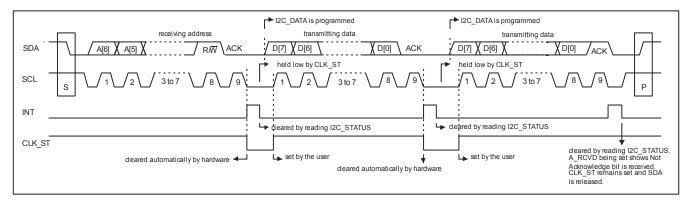


Figure 7 – Slave Mode Timing Waveform (Transmission, 7-bit Address Mode)

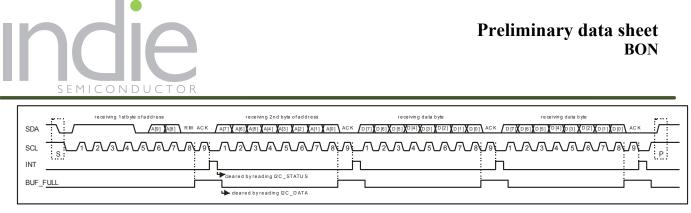


Figure 8 – Slave Mode Timing Waveform (Reception, 10-bit Address Mode)

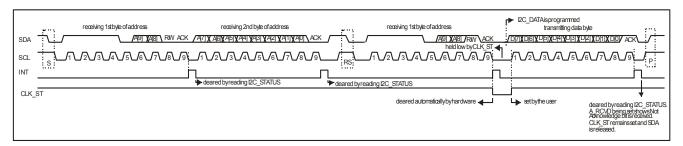


Figure 9 – Slave Mode Timing Waveform (Transmission, 10-bit Address Mode)

8.5.1.2 Master Mode

Master Mode:

- 1. Select the master mode.
- 2. Define the baud rate. The equation defining the baud rate as a function of the system clock is:

$$Fi2c = \frac{Fclk}{2* (divider+1)}$$

Where Fi2c is the frequency of the I^2C interface, divider is the i2c divider and Fclk is the system clock.

- 3. Enable the interface.
- 4. Enable the interrupts and define the corresponding handlers, exactly like in items 6 and 7 from the slave mode.

From this point on the application must handle the communication. The following paragraphs will describe the general steps:

As an I2C Master, the Master controls SCL and SDA when issuing Start, Repeated Start and Stop conditions. It also drives (release/drain) SCL and SDA when transmitting address/data bytes as well as ACK/NACK bits after receiving data bytes.

8.5.1.2.1 Configuration Settings

As an I²C Master, the Master controls SCL and SDA when issuing Start, Repeated Start and Stop conditions. It also drives (release/drain) SCL and SDA when transmitting address/data bytes as well as ACK/NACK bits after receiving data bytes.

When **IEN** and **IMS** fields are both set the interface is configured as an I^2C Master.

8.5.1.2.2 Baud Rate Generators Configuration

A baud rate generator (BRG) inside the peripheral serves as an engine to time SCL transition during data transfer as well as the transitions of both SCL/SDA during Start, Repeated Start and Stop conditions.

BRG consists of an 8-bit counter that when enabled, loads the value from **I2CADDR0** and counts down to 0 and Then goes back to **I2CADDR0** value and repeats counting down process. When BRG counter counts down to 0, it triggers the SCL transitions during data transfer and SCL/SDA transitions during Start, Repeated Start and Stop conditions.

The peripheral's baud rate is determined by the system clock frequency F_{clk} and divider. The equation is:

$$Fi2c = \frac{Fclk}{2* (divider+ 1)}$$

8.5.1.2.3 Start Condition

The Master issues a Start condition when **IRSTRB** is set by the user. When detecting the issued Start condition the Master asserts an interrupt and clears **ISTRSTRETCH**. The user reads **I2CSTATUS** to clear the interrupt condition. At this point the **ISTRR** is set.

Once **ISTRSTRETCH** is set, if SCL is sampled low first before SDA goes low or if SCL or SDA is already sampled low when **ISTRSTRETCH** is set, Then There is a bus collision due to another I²C Master on the bus, and the bus collision interrupt is asserted. The application must read **I2CSTATUS** to clear this interruption condition.

8.5.1.2.4 Repeated Start Condition

The Master issues a Repeated Start condition when **ISTRSTRETCH** is set by the user. When detecting the issued Repeated Start condition, the Master asserts an interrupt and clears **IRSTR**. The user reads **I2CSTATUS** to clear the interruption condition. At this point the **ISTRR** is set.

Once **IRSTR** is set, if SCL is sampled low first before SDA goes low, or if SDA is sampled low when SCL goes from low to high, Then There is an I^2C bus collision and a collision interrupt is asserted. The user reads **I2CSTATUS** to the interrupt condition.

8.5.1.2.5 Stop Condition

The Master issues a Stop condition when **ISTPSIZE** is set by the user. When detecting the issued Stop condition the Master asserts an interrupt and clears **ISTPSIZE**. The user reads **I2CSTATUS** to clear the interrupt condition. **ISTPR** is set.

Once **ISTPSIZE** is set, if SDA is sampled low one baud period (T_{br}) after it is released by the peripheral, or after SCL is released, SCL is sampled low before SDA goes high, Then There is an I²C bus collision and a collision interrupt is asserted. The user reads **I2CSTATUS** to clear the collision interrupt condition.

8.5.1.2.6 Acknowledge Bit

The Master transmits ACK/NACK bit when **ISACK** is set by the user. If the value of **ISNACK** is 1, a NACK bit is transmitted otherwise an ACK bit is transmitted. The Master asserts an interrupt and clears **ISNACK**. The user reads **I2CSTATUS** to clear the interrupt condition.

If the Master transmits a NACK bit but detects an ACK bit, Then There is an I^2C bus collision and a collision interrupt is asserted. The user reads **I2CSTATUS** to clear the collision interrupt.

8.5.1.2.7 I2C Write Access Sequence

The typical I²C write access sequence consists of the following steps:

- The user sets **ISTRSTRETCH** to issue a Start condition.
- The Master detects the Start condition and asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt and check **ISTRR**.
- The user programs **I2CDATA** with the destined I²C Slave's address, Then the Master starts transmitting the address byte.
- After sampling ACK/NACK bit sent by the Slave, the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt condition and check **IACKR**.
- The user programs **I2CDATA** with the data byte to be transmitted, Then the Master starts transmitting the data byte.
- After sampling ACK/NACK bit sent by the Slave, the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt condition and check **IACKR**.
- Repeat steps 5 and 6 to transmit more bytes.
- The user can access a different I²C Slave or read from the same one by setting IRSTR, Then Master issues a Repeated Start condition. When the condition is sampled the Master asserts an interrupt. The user reads I2CSTATUS to clear the interrupt condition and check ISTRR.
- The user concludes current transfer by setting **ISTPSIZE**, and the Master issues a Stop condition. When the condition is sampled the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt and check **ISTPR**.

Figure 10 shows a timing waveform of Master write access. Note that the only difference between 7-bit and 10-bit address mode is that the user needs to program two address bytes in 10-bit mode.

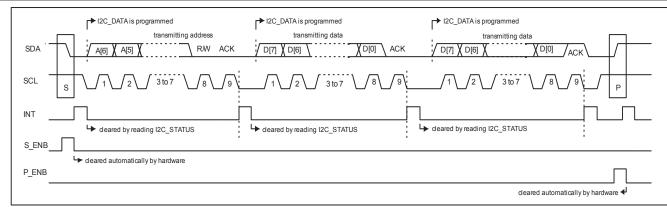


Figure 10 – Master Timing Waveform (Transmission)

8.5.1.2.8 *I*²C Read Access Sequence

The typical I²C read access sequence consists of the following steps:

- The user sets **ISTRSTRETCH** to issue a Start condition.
- The Master detects the Start condition and asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt and check **ISTRR**.
- The user programs **I2CDATA** with the destined I²C Slave's address, Then the Master starts transmitting the address byte.
- After sampling ACK/NACK bit sent by The Slave, the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt and check **IACKR**.
- The user sets **IRCSTRT**, which enables the Master to pulse SCL and shift in data byte. After shifting in the whole data byte the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt. The user then reads **I2CDATA** to fetch the received data byte.
- The user clears **ISNACK** (Acknowledge bit to be sent) and sets **ISACK**. The Master transmits ACK bit. After the transmission the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt.
- Repeat steps 5 and 6 to receive more bytes.
- The user can access a different I²C Slave or write to the same one by setting **IRSTR**, then the Master issues a Repeated Start condition. When the condition is sampled the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt and check **ISTRR**.

- If the data byte being received is the last one, after clearing the interrupt, the user sets **ISNACK** (Not Acknowledge bit to be sent) and **IRSTS**. Master transmits NACK bit. After the transmission the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt.
- The user concludes current transfer by setting **ISTPSIZE**, and the Master issues a Stop condition. When the condition is sampled the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt and check **ISTPR**.

Figure 11 shows an example of Master read access.

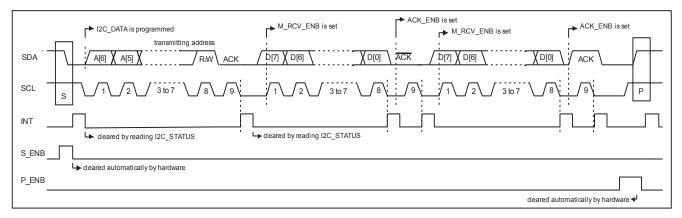


Figure 11 – Master Timing Waveform (Reception)

8.5.1.2.9 RW_BUSY Indicator

Whenever detecting a Start/Stop condition it does not issue, the Master asserts/de-asserts RW_BUSY to indicate the busy/idle status of I^2C bus. The user can check **IRWBUSY** before issuing a Start condition so bus collision can be avoided.

8.5.2 I2C Registers

The following registers are made available by the I²C interface:

<u>I2CSTATUS</u>: I²C status register.

I2CSTA	US		0x50000008			0x00		
R	R	R	R	R	R	R	R	
IACKR	IADDRR	ISTRR	ISTPR	IRWBUSY	IBUFF	IWBUFOVL	IRBUFOVL	
MSB							LSB	
Bit7	IACKR: Ackno	owledge receive	d					
	0 = ACK recei	ved / 1 = ACK	not received					
Bit6	IADDRR: Data	a/Address receiv	ed (slave mode))				
	0 = DATA rec	eived / 1 = ADE	RESS received					
Bit5	ISTRR: Start I	bit received						
	0 = Start bit no	ot received						
	1 = Start bit re	eceived						
Bit4	ISTPR: Stop b	oit received (slav	e mode)					
	0 = No stop bi	t received						
	1 = Stop bit re	eceived						
Bit3	IRWBUSY: RO	ead/Write Busy:						
	Master Mode:							
	0 = E	Bus not being ac	cessed					
	1 = E	Bus being access	sed					
	Slave Mode:							
	0 = 12	2C write operation	on (Slave receive	es data)				
	1 = 12	2C read operatio	n (Slave transmi	its data)				
Bit2	IBUFF: Buffer	Full						
	0 = Buffer is e							
				or There is one b	yte to be transm	litted		
Bit1		Nrite buffer over	flow					
	0 = Buffer is empty							
		nift register is full						
Bit0	IRBUFOVL: Data/Address received (slave mode)							
	0 = Register was read							
NOTE	1 = Internal shift register is full and another byte is received from I2C bus. <u>NOTE</u> : While IRBUFOVL is set the shift-in of bits from bus is stopped.							
<u>NOTE</u> : V	IRBUFO	VL is set the shif	t-in of bits from b	ous is stopped.				

<u>I2CCTRL1</u>: I²C control register 1.

I2CCT	RL1			0x500000	09		0x00		
R/	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
IRS	STR	ICLKSTR	IGC	IRCSTRT	ISNACK	ISACK	ISTPSIZE	ISTRSTRET CH	
M	SB							LSB	
Bit7	IRST	R: Repeated s	tart bit (N	laster Only)	•		·		
	0 = Re	epeated start l	bit disable	ed					
	1 = ls:	sue start-bit tra	ansmit er	hable (when set	the I2C transmits	Repeated Star	t bit), cleared by	HW.	
Bit6	ICLKS	STR: Clock str	etch (Sla	ve Only)					
	0 = S0	CL held low /	1 = SCL	released					
Bit5	IGC: (General call a	ddress (S	lave Only)					
	0 = General call address disabled / 1 = General call address enabled								
Bit4	IRCS	FRT : Start bit	reception	(Master Only a	nd cleared by HV	V)			
	0 = Re	eceive operati	on not all	owed					
	1 = Re	eceive operati	on starts	(the receive ope	eration starts whe	en this bit is set)			
Bit3	ISNA	CK: ACK bit to	be trans	mitted: (Master					
	0 = A0	CK is transmit	ted upon	reception of byt	e / 1 = NA	CK is transmitte	d upon reception	n of byte	
Bit2		K: ACK bit (Ma							
	0 = No	D ACK/NACK	bit transn	nitted					
				-	NACK) is transm	nitted			
Bit1		-	or selecti	on of address si	ze				
	Maste	r Mode							
		0 = No sto							
	0	1 = Stop bi	it sent						
	Slave								
		0 = 7-bit ad							
Bit0	етр	t = 10-bit a STRETCH: Stat		rotob					
ыю		r Mode	art anu st	TEICH					
	iviasle	0 = No sta	rt hit sent						
		1 = Send s							
	Slave								
		0 = no cloc	k stretch						
			clock stretched						

<u>I2CCTRL2</u>: I²C control register 2.

I2CCTF	RL2		0x5000000A	A		0x00				
R/\	W R/W	R/W	R/W	R/W	R/W	R/W	R/W			
IMS	K4 IMSK3	IMSK2	IMSK1	IMSK0	IEN	IFILTER	IMS			
MS	SВ					LS				
Bit7-3	IMSK[4:0]: I ² C Addr	ess mask (Sla	ave Only)							
Bit2	IEN: I ² C Enable bit									
	$0 = I^2 C$ disabled									
	$1 = I^2 C$ enabled									
Bit1	IFILTER: I ² C filter									
	0 = Filter disabled									
	1 = Filter enabled									
Bit0	IMS: I ² C Master/Sla	ve								
	$0 = I^2 C$ slave									
	$1 = I^2 C$ master									
implem	In order to ignore to lented on the incomin R. The truth table of th	g SCL and SI e median filte	DA data paths.	This filter car w.	filter ope n be enab	rating at system led/disabled by	n clock rate is setting/clearing			
		Filter tab 0	Filter tab 1	Filter tab 2	Filter ou	tnut				

Table 14 - Filte	r Tabs and outp	ut		
Filter tab 0	Filter tab 1	Filter tab 2	Filter output	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

I2CDATA: I²C data.

I2CDATA	I2CDATA)B	0x00					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
IDT7	IDT6	IDT5	IDT4	IDT3	IDT2	IDT1	IDT0			
MSB							LSB			
Bit7-0 IDT[7	Bit7-0 IDT[7:0] : I ² C Data									

<u>I2CADDR0</u>: I²C address 0.

I2CADDR0			0x5000000C		0x00						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
IADDR7	IADDR6	IADDR5	IADDR4	IADDR3	IADDR2	IADDR1	IADDR0				
MSB							LSB				
Bit7-0 IADD	Bit7-0 IADDR[7:0]: I ² C Data register low.										

<u>I2CADDR1</u>: I²C address 1.

I2CADDR1		0x500000D			0x00						
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	R/W	R/W				
-	-	-	-	-	-	IADDR9	IADDR8				
MSB							LSB				
bit7-0 IADI	bit7-0 IADDR[9:8]: I ² C Data register high.										

8.6 ADC

BON features two analog to digital converters (ADC1 and ADC2). These ADCs are used for short circuit detection algorithm. However, when they are not used for the short circuit detection, they are available for the general purpose. Each ADC is an 8-bit analog to digital converter with single ended input. The main features are described below:

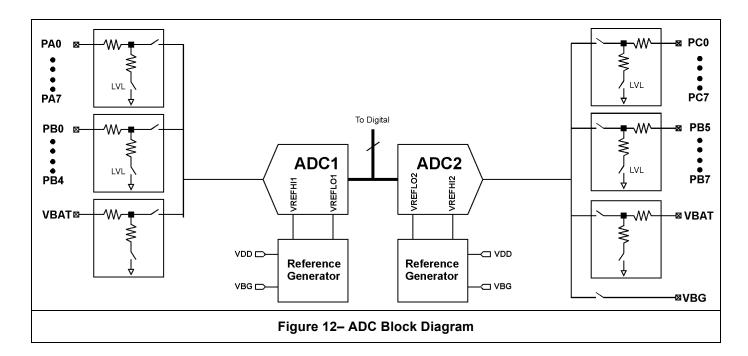
- 8-bit resolution
- Single ended input
- Up to 80 kSPS
- Configurable reference (VREF = VREFHI-VREFLO)
 - Either based on the bandgap voltage(VBG) or regulated supply voltage(VDD)
 - o Scalable
- ADC input range is from 0V to VDD
- The 8 bit resolution may be targeted over a reduced input voltage range via a programmable gain block
- Total of 27 channels (14 in ADC1 and 13 in ADC2)

8.6.1 ADC Description

BON ADC uses the standard charge redistribution technique, with a single-ended input and internally generated positive and negative reference voltages. There are two 8-bit ADC converters BON. ADC1 accommodates 15 analog input channels while ADC2 accommodates 13 analog input channels. The user can select which input channels to be sampled by setting ADCCHANNEL register. Each ADC has its own internally generated reference voltages (VREFHI and VREFLO). The performance table is shown below.

Parameter	Conditions	min	typ	max	unit
Conversion speed				80	ksps
Clock Frequency				1	MHz
Input voltage range		0		VDD	V
Resolution				8	bits
INL				1	LSB
DNL				1	LSB

There are several steps required for the user to use the ADC. The general sequence is described below:


- 1. Select the input channel to be selected
 - a. ADCCH1 and ADCCH2 bits control the input multiplexor
 - b. Configure the input range with LVL bit
- 2. Configure ADC settings.
 - a. Set ADC clock frequency.
 - b. Configure references by setting ADCREFHI, ADCREFLO, ADCPGN, and ADCREFS bits.
- 3. Enable ADC.
- 4. Start the ADC conversion.
- 5. Check the ADC status bit and read the data.

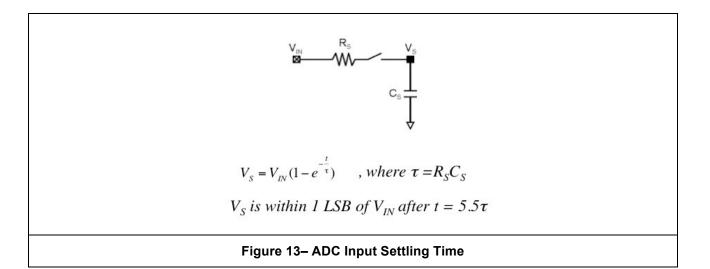
The following section will describe each configuration steps in detail.

8.6.1.1 Input Channel Selection

All high voltage GPIOs (PA[7:0], PB[7:0], and PC[7:0]), the bandgap voltage (VBG), and the battery voltage (VBAT) are available as an input to the ADCs. The user can control which inputs are connected for the conversion by programming the control bits, ADDCH1 and ADDCH2 in ADDCHANNEL register.

Please note that since the high voltage GPIOs can have a signal that ranges from 0 to VBAT and the input range of the ADC is from 0 to VDD, it is necessary to have an option to attenuate the signal if the user wants to convert the full signal range for the GPIO. Each GPIO has a programmable control bit (LVL) to attenuate its signal by a factor of 8.

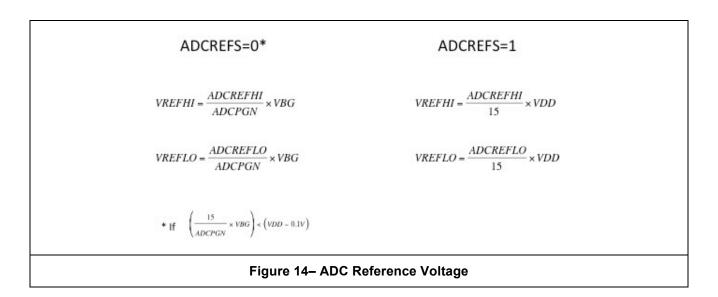
8.6.1.2 ADC Clock and Sampling Period


The conversion algorithm has a basic period of 9 cycles (one for sampling, one for each bit). There is a twocycle latency from the last bit measurement and digital data availability. Additionally there is single idle cycle to allow biasing before any conversion is initiated. Thus a single conversion will take 13 cycles.

The converter will use a single clock cycle to sample the input into an input capacitor. When the channel is selected, the source must drive the S/H capacitor through the series resistance. The sampling time will vary with this resistance. The input to ADC must have sufficiently low driving impedance and settling time to settle the input to within 1 LSB of the data conversion during the input sampling stage. An equivalent circuit and related equations are depicted in Figure 13.

The ADC clock frequency can be programmed through ADCCLKDIV register. As an example, if ADC clock is derived from 3.58MHz crystal divided by 4, the input has $1.12\mu s$ to settle. Since the C_s = 10pF in BON, the maximum source resistance to guarantee 8-bit performance can be calculated as below:

$$R_s = \frac{1.12\mu s}{10\,pF \times 6} = 18.6k\Omega$$


If the source impedance is larger, the user can reduce the ADC clock frequency.

8.6.1.3 Configuration of Reference Voltages for the ADC

The ADC can generate its reference voltages (VREFHI and VREFLO) from two different sources, the regulated supply voltage (VDD) or the bandgap voltage (VBG). The ADCREFS bit in ADCREG3 register selects the source. Once the reference source is selected, the reference voltages can be programmed through ADCREFHI, ADCREFLO, and ADCPGN bits according to Figure 14. It should be noted that when VBG is used as the reference source, care must be taken so that the internal voltages do not saturate.

Once the reference voltages are established, the ADC conversion equation for input voltage (VIN) can be defined as:

$$ADCDT = floor\left(255 \times \frac{(VIN - VREFLO)}{(VREFHI - VREFLO)}\right)$$

Here are few examples:

- Example 1: In a system operating with VDD=3V, there is a signal that moves between 0V and 2.94V. In this case it would be recommended to select VDD as the reference source and ADCREFH=15, ADCREFL=0, and ADCPGN=15. This selection would allow for the maximum range of measurements (0V to VDD).
- Example 2: In a system operating with VDD=3V and VBG= 1.21V, there is a signal that moves between 0V and 2.5V. In this case VBG can be selected as the reference source with ADCREFH=13, ADCREFL=0 and ADCPGN=7. This configuration would allow the signal range from 0V to 2.6V:
- Example 3: In a system operating with VDD=3V and VBG=1.21V, there is a signal that moves between 1.71V and 2.2V. In this case selecting VBG as the reference source and select ADCREFH=15, ADCREFL=11, and ADCPGN=8 we can achieve higher resolution:

The resolution in Example 3 can be calculated as follow:

$$RESOLUTION = \left(\frac{VREFHI - VREFLO}{255}\right) = \left(\frac{\left(\frac{15}{8} \times 1.21\right) - \left(\frac{11}{8} \times 1.21\right)}{255}\right) = \frac{2.27 - 1.66}{255} = 2.38 \, mV$$

Note that in this particular case we have the 8-bit ADC effectively generating a digital value with the precision of a 10-bit ADC operating from 0V to 3V.

It is clear from the examples how flexible the ADC can be in a range of applications. The user can devise several schemes to cleverly measure the range of signal of interest and then narrow the reference values to get the optimum resolution if the conversion time is within range.

8.6.1.4 ADC Start and Status

Before starting the conversion, the ADC must be enabled and biased. The ADC is enabled by the ADCEN bit (**ADCREG3**). The START bit (**ADCSTART**) starts the conversion process. Once completed the value of the conversion is loaded into the ADCDATA registers.

8.1.1 ADC Registers

The following registers define the behavior of the ADC:

ADCCHANNELS: Channel selection for both ADCs.

ADCCHA			0x50000054			0x00		
Aboon			0,00000004			0,00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADC2C	H3 ADC2CH2	ADC2CH1	ADC2CH0	ADC1CH3	ADC1CH2	ADC1CH1	ADC1CH0	
MSB								
Bit7-4	ADC2CH[3:0]: Chann	el Selection for A	ADC2:					
Bit3-0	ADC1CH[3:0]: Chann	el Selection for A	ADC1:					
ADC2CH	[3:0]			ADC1CH[3:0]				
	0000 = PC0			0000) = PA0			
0001 = PC1 0001 = PA1								
0010 = PC2 0010 = PA2								
	0011 = PC3			0011	= Not used			
	0100 = PC4			0100) = PA4			
	0101 = PC5			0101	l = PA5			
	0110 = PC6			0110) = PA6			
	0111 = PC7			0111	I = PA7			
	1000 = PA3			1000) = PB0			
	1001 = PB5			1001	l = PB1			
	1010 = PB6			1010) = PB2			
	1011 = PB7			1011	l = PB3			
	1100 = NC			1100) = PB4			
	1101 = NC			1101 = Reserved				
	1110 = Reserved			1110	= Reserved			
	1111 = NC			1111	= NC			

ADCSTART: ADC start of conversion control

ADCSTART			0x50000055		0x00					
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	R/W			
_	_	-	Ι	_	Ι	_	START			
MSB							LSB			

Bit0 **START**: Writing one starts the conversion. Reading returns the status of conversion; '0' means conversion

Is finished and '1' means the conversion is ether pending or in progress

ADC1DATA: ADC1 result.

ADC1DATA			0x50000056		0x00						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
AD1DT7	AD1DT6	AD1DT5	AD1DT4	AD1DT3	AD1DT2	AD1DT1	AD1DT0				
MSB							LSB				
Bit7-0 AD1	Bit7-0 AD1DT[7:0]: ADC1 Result										

ADC2DATA: ADC2 result.

ADC2DATA			0x50000057		0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
AD2DT7	AD2DT6	AD2DT5	AD2DT4	AD2DT3	AD2DT2	AD2DT1	AD2DT0	
MSB							LSB	
Bit7-0 AD	2DT[7:0]: AD	C1 Result						

ADCCLKDIV: ADCs Clock Divider Control.

ADCCLKDI	/	0x5000005A			0x6F			
Reserved R/W		Reserved	Reserved R/W		R/W	R/W	R/W	
		-	-	-	ADCDIV1	-	ADCDIV0	
MSB							LSB	
Bit2-0 ADC	DIV[1:0]	: ADC Clock	divider					
00 =	System	Clock/2						
01 = System Clock/4								
1x =	System	Clock/1						

ADCREG0: ADC1 Reference Settings

ADCREG0			0x50018008	0xF0							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
ADC1REFH3	ADC1REFH2	ADC1REFH1	ADC1REFH0	ADC1REFL3	ADC1REF L 2	ADC1REF L 1	ADC1REF L 0				
MSB							LSB				
	Bit7-4 ADC1REFH[3:0]: ADC1 Reference High Setting										

ADCREG1: ADC2 Reference Settings

ADCREG1			0x50018009	0xF0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADC2REFH3	ADC2REFH2	ADC2REFH1	ADC2REFH0	ADC21REFL3	ADC2REF L2	ADC2REF L1	ADC2REF L0
MSB							LSB
		C2 Reference Hi C2 Reference Lo	• •				

ADCREG2: ADCs Reference Gain Values

ADCREG2			0xFF				
R/W R/W		R/W	R/W R/W		R/W	R/W	R/W
ADC1PGN3	ADC1PGN2	ADC1PGN1	ADC1PGN0	ADC2PGN3	ADC2P GN2	ADC2P GN1	ADC2P GN0
MSB							LSB
	PGN[3:0]: ADC1 PGN[3:0]: ADC2						

ADCREG3: ADCs General Control

ADCRE	EG3		(0x5001800B			0x13	
Reserv	ved R/W	/	R/W	R/W	R/W	R/W	R/W	R/W
-	- ADCEN ADCGNDOFF ADC_SW1 AD					ADC_CAL	ADC2REFS	ADC1REFS
MSE	3							LSB
Bit6	ADCEN: AI	DCs	Enable Bit.					
	0 = ADCs E	Disab	led / 1 = ADCs En	abled				
Bit5	ADCGNDO	FF:	Ground offset corre	ection				
	0 = bandga	p an	d ADC reference h	ave common gr	ound			
	1 = differen	ce be	etween bandgap ar	nd ADC referen	ce is compensa	ited by switche	d capacitor circui	it
Bit4-3	ADCSW[1:	0] : A	DCs Enable Bit.					
	00 = Correl	ated	double sampling o	ff				
	01 = Input o	offset	t calibration on					
	1x = Correla	ated	doubling sampling	on (default)				
Bit2	ADCCAL: /	٩DC	Calibration					
	0 = Normal							
	1 = Calibrat	tion r	node					
Bit1	ADC2REFS	S: AD	0C2 Internal Refere	ence Source Se	lection			
	0 = Band G	ар						
	1 = VDD							
Bit0	ADC1REFS	S: AD	0C1 Internal Refere	ence Source Se	lection			
	0 = Band G	ар						
	1 = VDD							
L								

8.7 PULSE WIDTH MODULATORS (PWM)

BON implements two PWMs. Their main characteristics are:

- Twelve bits resolution Both period and width.
- Independent Prescalers
- Programmable active level
- Short Circuit detection circuit with programmable level
- Programmable outputs
 - PWM1 = [PB0, PC5 and PC7]
 - PWM2 = [PA7, PB1 and PC3]

8.7.1 PWMs Usage Description

The PWM circuit generates wide range high resolution modulated output for motor driver, led drivers and other drivers used in BON. Each PWM has total of 4 data and configuration registers to communicate with the microcontroller.

The waveform is controlled by 12-bit period word (PWMnPER and PWMnEXT) and 12-bit pulse width word (PWMnPW and PWMnEXT) are used to determine the output waveform.

The entire waveform can be scaled by adjusting the Prescaler value in PWMnCTRL. The prescaler divided value, PWM_DIV, can be set to one of eight different settings shown in Table 16.

Table 16 PWM Prescaler Divide Values							
PWM_PRESC	PWM_DIV (f _{XO} /f _{PWM})						
000	1						
001	2						
010	4						
011	8						
100	32						
101	256						
110	8,192						
111	262,144						

The output period is calculated as:

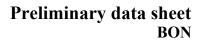
$$Period = \frac{1 + (PWM_PER \times PWM_DIV)}{SystemClock}$$

For PWM1 and for PWM2 the PWM pulse width is calculated as:

$$PulseWidth = \frac{1 + (PWM_PW \times PWM_DIV)}{SystemClock}$$

To control the active level of the PWM, a control bit **PWM_INV** is used. If this bit is set to one, the PWM output is low level during the pulse and one at other times, including if the PWM is disabled either by the user or by the short circuit protection.

Alternatively if **PWM_INV** is set to zero then the PWM outputs a high level during the pulse.


NOTE: From the above equations we can see that for a system clock of 3.579545MHz the period is of 3.325msec. (Frequency of ~300Hz with a width of 249.4msec, duty cycle of ~75%.)

8.7.2 PWMs Registers

The following registers are provided to control the PWMs:

PWM1CTRI ·	PWM1	General Control

PWM10	M1CTRL 0x50000048 0x00								
R/\	/W Reserved Reserved R/W Reserved R/W R/W							R/W	
PWM1	M1_EN PWM1_INV - PRESC2 PRESC1 PRESC							PRESC0	
MS	MSB LS						LSB		
Bit7									
		WM Disabled WM Enabled							
Bit4	PWM ²	1_INV: PWM1 o	utput signal di	rection					
	0 = nc	ormal logic							
	1 = inv	verted logic (acti	ve low)						
Bit2-0	PRESC[2:0]: PWM's Prescaler								
	000 = System Clock/1								
	001 =	System Clock/2							

India	
SEMICONDUCTOR	

010 = System Clock/4	
011 = System Clock/8	
100 = System Clock/32	
101 = System Clock/256	
110 = System Clock/8192	
111 = System Clock/262144 (2 ¹⁸)	

<u>PWM1PER</u>: PWM1 period high byte register

PWM1PER			0x00				
R/W R/W		R/W	R/W	R/W	R/W	R/W	R/W
PWM1PER11	PWM1PER10	PWM1PER9 PWM1PER8		PWM1PER7	PWM1 PWM1 PER6 PER5		PWM1 PER4
MSB							LSB
Bit7-0 PWM1F	PER[11:4]: PWM1	period high registe	er				

PWM1PW: PWM1 width high byte register

PWM1PW			0x00				
R/W R/W		R/W	R/W	R/W	R/W	R/W	R/W
PWM1PW11	PWM1PW10	PWM1PW9 PWM1PW8 I		PWM1PW7	PWM1 PW6	PWM1 PW5	PWM1 PW4
MSB							LSB
Bit7-0 PWM1	PW[11:4]: PWM1	width high regis	ster				

<u>PWM1EXT</u>: PWM1 extension with low nibble of period and width.

PWM1EXT			0x00						
R/W R/W		R/W	R/W	R/W R/W		R/W	R/W		
PWM1PER3	PWM1PER2	PWM1PER1	PWM1PER0	PWM1PW3	PWM1 PW2	PWM1 PW1	PWM1 PW0		
MSB							LSB		
		Bit7-4 PWM1PER[3:0]: PWM1 period low nibble							

<u>PWM2CTRL</u>: PWM2 General Control

PWM20	CTRL			0x5000004C			0x00	
R۸	N	Reserved	Reserved	R/W	Reserved	R/W	R/W	R/W
PWM2	2_EN	-	-	PWM2_INV	-	PRESC2	PRESC1	PRESC0
MS	B							LSB
Bit7	PWM	2_EN: PWM2	enable bit.					
	0 = P	WM Disabled						
	1 = P	WM Enabled						
Bit4	PWM	2_INV : PWM2	output signal	direction				
	0 = no	ormal logic						
	1 = in	verted logic (a	ctive low)					
Bit2-0	PRES	6C[2:0]: PWM	's Prescaler					
	000 =	System Clock	:/1					
	001 =	System Clock	/2					
	010 =	System Clock	:/4					
	011 =	System Clock	:/8					
	100 = System Clock/32							
	101 = System Clock/256							
	110 = System Clock/8192							
	111 =	System Clock	x/262144 (2 ¹⁸)					

<u>PWM2PER</u>: PWM2 period high byte register

PWM2PER		0x5000004D			0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PWM2PER11	PWM2PER10	PWM2PER9	PWM2PER8	PWM2PER7	PWM2 PER6	PWM2 PER5	PWM2 PER4
MSB							LSB
Bit7-0 PWM2PER[11:4]: PWM2 period high register							

PWM2PW: PWM2 width high byte register

PWM2PW			0x5000004E	0x00				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PWM2PW11	PWM2PW10	PWM2PW9	PWM2PW8	PWM2PW7	PWM2 PW6	PWM2 PW5	PWM2 PW4	
MSB							LSB	
Bit7-0 PWM2PW[11:4]: PWM2 width high register								

<u>PWM2EXT</u>: PWM2 extension with low nibble of period and width.

PWM2EXT			0x5000004F		0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PWM2PER3	PWM2PER2	PWM2PER1	PWM2PER0	PWM2PW3	PWM2 PW2	PWM2 PW1	PWM2 PW0	
MSB							LSB	
		/I2 period low nit 2 width low nibb						

8.8 GPIOs

BON provides 36 general-purpose I/O pins. BON's I/O pins are implemented with several different capabilities divided into the following groups:

- $\circ~$ GIO is a general purpose I/O referred to Vbat (from 9V up to 45V). When used as an output it is capable of sinking (to ground) 25mA or sourcing 5mA. When used as an input the GIO can be programmed to be high impedance, 100µA/5mA pull up or 100µA/5mA pull down. The state of the pin can be read while in output mode, therefore allowing for a software-based over current protection.
- SIO has the same functions as GIO, but with 200mA sink capability, which may be protected against over-current through software.
- PSIO (a single pin) has the same function as GIO, but with 200mA source capability, which may be protected against over-current through software.
- o 3V3IO are 3.3V digital I/Os, which are referenced to an internal regulator.

The following	table defines	the main	characteristics	of the GPIO pins:
The following			characteristics	or the or to pins.

I/O Type	Name	Conditions	Min.	Тур.	Max.	l/O Type	Name	Conditions	Min.	Тур.	Max.	Unit
	Ma	Threshold Low		1.65			VIL	Threshold Low		1.65		V
VIL VIH	Threshold High		4				Threshold High		4		V	
	Threshold Low		1.65			Vih	Threshold Low		1.65		V	
	VIH	Threshold High		4		010	VIH	Threshold High		4		V
GIO	Iol			25		SIO	lol			200		mA
	Іон			5			Іон			5		mA
	он Pull-	Strength Low		100			Pull-	Strength Low		100		μΑ
Down	Strength High		5			Down	Strength High		5		mA	
Pull- Up		Strength Low		100			Pull- Up	Strength Low		100		μΑ

Table 1	17 -gpio	Characterist	ics, Typ	pical Ope	erating	Conditio	ons					
l/O Type	Name	Conditions	Min.	Тур.	Max.	l/O Type	Name	Conditions	Min.	Тур.	Max.	Unit
		Strength High		5				Strength High		5		mA
	VIL	Threshold Low		1.65			VIL			1.65		V
		Threshold High		4						1.05		V
	Vih	Threshold Low		1.65			ViH			1.65		V
		Threshold High		4			VIH			1.05		V
PSIO	IOL			25		3V3IO	IOL			25		mA
1 010	I _{OH}			200		0,010	I _{OH}			5		mA
	Pull- Down	Strength Low		100			Pull- Down	Strength Low		-		μΑ
		Strength High		5				Strength High		-		mA
	Pull- Up	Strength Low		100			Pull- Up	Strength Low		-		μA
		Strength High		5				Strength High		-		mA

8.8.1.1 General-Purpose I/O (GIO)

The GIO interface pins are intended to operate as reconfigurable general-purpose inputs or outputs referenced to Vbat. Additionally, they can be used for open-drain pull-down on systems with voltage equal to or lower than their supply voltage, e.g. for 5V or 3.3V systems.

High current and low current pull-ups can be selected in receive mode, as well as a selectable threshold to receive at 3.3V, 5V or Vbat levels using signal thresholds of 1.65V and 4.0V respectively.

Additionally, outputs are protected against potentially damaging loads. When the high-level output is activated, the output current is limited by an internal circuit to 5mA, which can be sustained continuously.

When the low-level output is activated, protection against thermal damage caused by a short circuit must be done by user software by comparing the voltage level on the pad with the intended driven level shortly after activation using the 1.65V threshold receiver. If the level is different, i.e. above 1.65V threshold, then the user software must tri-state or activate a high level output within 200 milliseconds to avoid potential damage to the chip.

This protection is not intended to protect these pins against voltage overshoot from driving strongly inductive loads, and so GIO pins should not be used for inductive loads without additional protection on the PCB (**P**rinted **C**ircuit **B**oard).

Pin configuration is accomplished using special function registers, SFDICFG, PBnCFG, and PCnCFG.

The receiver is active at all times, and any read from the port will always return the data read from the pin, even if the pin is set as an output.

Table 1	8 - GIO a	nd SIO P	in Functional Configuration
DD	PUP	PDN	Pin Function
0	0	0	high-Z input
0	0	1	input with pull down (current level set by STR)
0	1	0	input with pull up (current level set by STR)
0	1	1	reserved
1	Х	0	nuch/null (to)/DD lough) output with simple load protection
1	0	Х	push/pull (to VDD levels) output, with simple load protection
1	1	1	open-drain output, with simple load protection

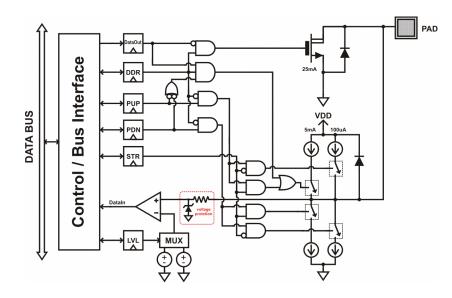


Figure 15 - Typical GIO Interface

8.8.1.2 High Current Pull down I/O (SIO)

SIO interface pins are intended to operate as reconfigurable inputs or outputs referenced to Vbat, optimized for use as high-current pull-downs. They can be used for open-drain pull-down on systems with voltage equal to or lower than their supply voltage, e.g. 3.3V or 5V systems.

High current and low current pull ups can be selected in receive mode, which uses a 4V signaling threshold level. Internal circuits are protected against sustained high voltage up to 45V applied to the pad.

A pull-down mode may be activated when using the I/O as an output. Pull-down output mode may be protected against potentially damaging loads by comparing the voltage level on the pad with a maximum level corresponding to a safe margin for thermal damage.

If the power dissipated in the transistor is too high, which happens when output voltage is above 1.65V with the pull down on, then the user software must turn the pull down off within approximately 200 milliseconds to avoid thermal damage.

In order to achieve this, the user software must read back from the pin with the threshold set to 1.65V as soon as possible after the pull down is activated in order to detect a short circuit or overload condition.

It is recommended that the pin be configured as push/pull when driving inductive loads to assist the freewheel function and reduce strain on the ESD diode which is responsible for conducting the freewheel current by allowing some current to pass through the PMOS transistor.

If the load is resistive, then the open drain mode of protection is preferred. Pull up protection is implemented in a same fashion as with the GIO type, by internally limiting the maximum current to 5mA, which can be sustained continuously at any pad output voltage within normal operating conditions.

The receiver is active at all times, and any read from the port will always return the data read from the pin, even if the pin is set as an output.

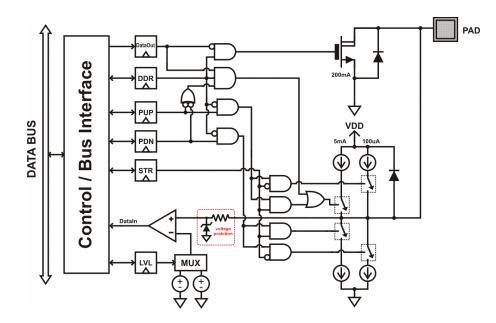


Figure 16 - Typical SIO Interface

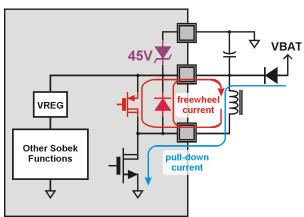


Figure 17: Freewheel Action

Figure 17 illustrates inductive freewheel operation.

Code Example: Configure Port C with the following characteristics:

- PWM2 in PC3, PWM1 in PC7 with N-MOS transistor (Active level = 1 = High)
- Interrupt mask in PC0 and PC1,
- Output enable for PC3, PC5 and PC7
- Low current in pull-up/down
- Pull-up in PC0 and PC1
- No pull downs
- Input threshold high for PC0 and PC1

8.8.1.3 GIO and SIO connection to ADC

All GIOs and SIOs are connected to the ADC input channel selector. The signals applied to these pins can either directly goes through the multiplexor or attenuated by factor of 8 and then goes through the multiplexor depending on the LVL bit.

8.8.1.4 LED

BON provides a pin specially designed to control a RED or BLUE LED simultaneously.

In the LED mode, additional high voltage current sources are activated providing up to ~45mA current. The current level is programmable. When the I/O pin is set to 1 with LEDEN bit enabled (**LEDIO**), regardless of the setting of GIO, LED current source is activated. When the I/O pin is reset to 0, it is deactivated.

The following diagram shows the recommended configuration of LEDs:

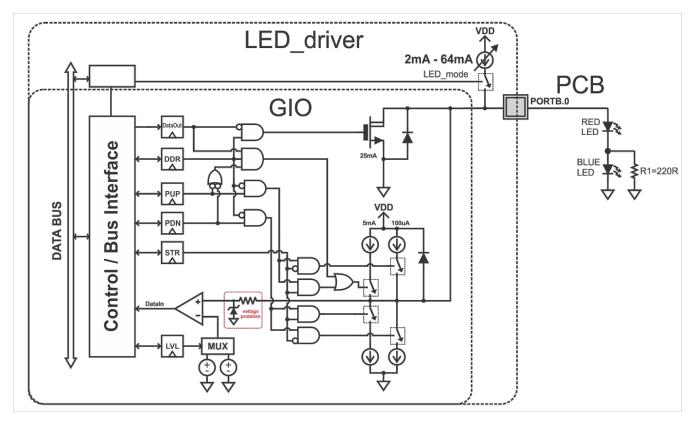


Figure 18 – LED pin Block Diagram

The nominal value of the resistor, R1 is 220Ω . In this case, the nominal current level is around 20mA for the red LED whereas it is 6.5mA for the blue LED. This output current can be programmed in the range of 0mA up to 45mA in 3mA steps. With these programmable current settings and the resistor R1 the brightness of each LED can independently be adjusted.

8.8.2 GPIO Registers

The following registers control the behavior of the GPIO pins:

<u>PORTA:</u> Port A input and output register. When a bit is selected as output the corresponding pin will reflect the register's bit. When a bit is selected as input the bit will reflect the condition of the pin.

PORTA	N	0>	(500000	60	0x00				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0		
MSB			L						
Bit7-0	PA[7:0]	: Port A r	egister b	oits.					
	0 = Pin s	0 = Pin state is '0'							
	1 = Pin s	1 = Pin state is '1'							

<u>PORTB:</u> Port B input and output register. When a bit is selected as output the corresponding pin will reflect the register's bit. When a bit is selected as input the bit will reflect the condition of the pin.

PORTE	3	0>	(5000006	61		0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0		
MSB									
Bit7-0	PB[7:0]	: Port B r	egister b	oits.					
	0 = Pin :	0 = Pin state is '0'							
	1 = Pin s	1 = Pin state is '1'							

<u>PORTC:</u> Port C input and output register. When a bit is selected as output the corresponding pin will reflect the register's bit. When a bit is selected as input the bit will reflect the condition of the pin.

PORTO	;	0>	(5000006	62	0x00				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0		
MSB			LS						
Bit7-0	PC[7:0]	: Port C r	egister b	oits.					
	0 = Pin s	0 = Pin state is '0'							
	1 = Pin s	1 = Pin state is '1'							

<u>PORTD:</u> Port D input and output register. When a bit is selected as output the corresponding pin will reflect the register's bit. When a bit is selected as input the bit will reflect the condition of the pin.

PORTD		0:	<5000006	63	0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	
MSB							LSB	
Bit7-0	PD[7:0]	: Port D ı	egister b	its.				
	0 = Pin s	0 = Pin state is '0'						
	1 = Pin s	state is '1	l'					

<u>PORTE:</u> Port E input and output register. When a bit is selected as output the corresponding pin will reflect the register's bit. When a bit is selected as input the bit will reflect the condition of the pin.

	0>	0x00						
Reserved Reserved		Reserved	R/W	R/W	R/W	R/W		
-	-	-	PE3	PE2	PE1	PE0		
						LSB		
B:0]: Port E reg	gister bits.							
0 = Pin state is '0'								
1 = Pin state is '1'								
	- 3:0] : Port E rep Pin state is '0'	Reserved Reserved - - 3:0]: Port E register bits. Pin state is '0'		Reserved Reserved R/W - - PE3 s:0]: Port E register bits. Pin state is '0'	Reserved Reserved R/W R/W - - PE3 PE2 B:0]: Port E register bits. Pin state is '0' Pin state is '0'	Reserved Reserved R/W R/W - - PE3 PE2 PE1 stop: Port E register bits. Pin state is '0' Pin state is '0' Pin state is '0'		

PORTDOE: Port D output enable register.

PORTDO			0x50000065	5	0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PDOE7	PDOE6	PDOE5	PDOE4	PDOE3	PDOE2	PDOE1	PDOE0	
MSB	MSB						LSB	
0 =	D OE[7:0] : Po = Pin is inpu = Pin is outp		enable bits.					

PORTEOE: Port E output enable and Mode configuration register

PORTE	OE	(0x50000066			0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PEOE3	B PEOE2	PEOE1	PEOE0	MDSPI	MDI2C	MDUART	MDLIN	
MSB	ISB LSB						LSB	
Bit1 Bit2	MDLIN: LIN mode enable 0 = GPIO 1 = LIN mode MDUART: UART mode enable 0 = GPIO 1 = UART mode MDI2C: I2C mode enable 0 = GPIO 1 = UART mode							
Bit3 Bit7-4	 1 = I2C mode MDSPI: SPI mode enable 0 = GPIO 1 = SPI mode PEOE[3:0]: Port E output enable bits. 0 = Pin is input 1 = Pin is output 							

PCONF: I2C, LIN and UART configuration register.

PCON	=		()x50000067	,		0x00	
Reser	ved	Reserved	Reserved	R/W	R/W	R/W	R/W	R/W
I2C_R	T[1]	I2C_RT[0]	-	LTREN	LPSWAP	UPSWAP	LTXPOL	UTXPOL
MS	В							LSB
Bit7-6	12C_1	RT[1:0]: I2C R	esistor Trim					
	00 =	Open						
	01 =	1k						
	10 =	10k						
	11 =	100k						
Bit4	LTRE	EN: Lin transmi	ssion enable	bit				
	0 = T	ransmission di	sabled					
	1 = T	ransmission ei	nabled					
Bit3	LPSV	VAP: LIN Pins	Swap Bit.					
	0 = P	ins are not swa	apped (TX=PI	D[7] and RX	(= PD[6])			
	1 = P	ins are swapp	ed (TX=PD[6]	and RX = F	PD[7])			
Bit2	UPS	NAP : UART P	ins Swap Bit.					
	0 = P	ins are not swa	apped (TX=PI	D[5] and RX	(= PD[4])			
	1 = P	ins are swapp	ed (TX=PD[4]	and RX = F	PD[5])			
Bit1	LTXF	OL : LIN signa	ls polarity.					
	0 = n	ormal polarity						
	1 = inverted polarity							
Bit0	0 UTXPOL: UART signals polarity.							
	0 = n	ormal polarity						
	1 = in	verted polarity	,					

<u>SFDICFGn:</u> PAn configuration register. (n = 0, 1, 2, 3)

r		1							
SFDIC	FGn		0x500	000068/9	9/A/B		0x00		
Rese	rved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W	
-		-	INTE	DD	STR	PUP	PDN	LVL	
MS	В							LSB	
Bit5	INTE	: Pin Change	Interrupt	enable b	oit				
	0 = I	nterrupt disab	led						
	1 = I	1 = Interrupt enabled							
Bit4	DD:	Data Directior	n						
	0 = I	nput							
	1 = 0	Dutput							
Bit3	STR	: Pull Up/Dow	n Strengt	h Contro	I				
	0 = L	_ow Strength (100uA)						
	1 = I	High Strength	(5mA)						
Bit2	PUP	: Pull up enab	le.						
	0 = [Disabled							
	1 = E	Enabled							
Bit1	PDN	I: Pull Down e	nable.						
	0 = [Disabled							
	1 = Enabled								
Bit0	LVL: Input Threshold level								
	0 = L	0 = Low Threshold							
	1 = H	1 = High Threshold							
μ									

PA4CFG: PA4 configuration register.

PA4CF	G		0×	(5000006	SC		0x00	
Rese	rved	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-		PWM2_SNS	INTE	DD	STR	PUP	PDN	LVL
MS	B							LSB
Bit6	PWM	2_SNS: PWM2	2 Short C	Circuit Se	nsor			
	0 = S	ensor Disabled	1					
	1 = S	ensor Enabled						
Bit5	INTE	: Interrupt not a	available					
Bit4	DD: [Data Direction						
	0 = Ir	iput						
	1 = O	utput						
Bit3	STR:	Pull Up/Down	Strength	Control				
	0 = L	ow Strength (1	00uA)					
	1 = H	igh Strength (5	imA)					
Bit2	PUP:	Pull up enable						
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = Disabled							
	1 = Enabled							
Bit0	LVL: Input Threshold level							
	0 = Low Threshold							
	1 = H	igh Threshold						

PA5CFG: PA5 configuration register.

PA5C	FG			0x5000006D			0x0	0
Rese	erved	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-	-	PWM1_SNS0	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit6	PWM	1_SNS0: PWM	11 Short Circui	t Sensor0				
	0 = S	ensor Disabled	I					
	1 = S	ensor Enabled						
Bit5	INTE	Interrupt not a	vailable					
Bit4		Data Direction						
	0 = In							
	1 = O	utput						
Bit3	STR:	Pull Up/Down	Strength Conti	ol				
	0 = Lo	ow Strength (1	00uA)					
	1 = H	igh Strength (5	mA)					
Bit2	PUP:	Pull up enable						
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = Disabled							
	1 = Enabled							
Bit0	it0 LVL: Input Threshold level							
	0 = Lo	ow Threshold						
	1 = High Threshold							

PA6CFG: PA6 configuration register.

PA6C	FG		0>	(5000006	6E		0x00	
Rese	rved	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-		PWM1_SNS1	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit6	PWN	/1_SNS0: PW	M1 Shor	t Circuit S	Sensor1			
	0 = Sensor Disab							
	1 = 5	Sensor Enabled	b					
Bit5	INTE	: Interrupt not	available	9				
Bit4		Data Direction						
	0 = 1	•						
		Dutput						
Bit3		: Pull Up/Down	-	h Contro	I			
	0 = L	ow Strength (100uA)					
	1 = H	High Strength (5mA)					
Bit2	PUP	: Pull up enabl	e.					
	0 = [Disabled						
	1 = E	Enabled						
Bit1	PDN	l: Pull Down en	able.					
	0 = Disabled							
	1 = E	Enabled						
Bit0	LVL	: Input Thresho	ld level					
	0 = L	ow Threshold						
	1 = H	ligh Threshold						

PA7CFG: PA7 configuration register.

PA7C	FG			0x5000006	6F		0x00	
Rese	erved	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-	-	PWM2_OUT	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit6	PWM	2_OUT: PWM2	2 Output	Enable				
	0 = P	WM output dis	abled					
	1 = P	WM output ena	abled					
Bit5	INTE	: Interrupt not a	vailable					
Bit4		Data Direction						
	0 = Ir	•						
		utput						
Bit3	STR:	Pull Up/Down	Strength	Control				
		ow Strength (1						
		igh Strength (5						
Bit2		Pull up enable						
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = Disabled							
	1 = Enabled							
Bit0	LVL: Input Threshold level							
	0 = Low Threshold							
	1 = High Threshold							

PB0CFG: PB0 configuration register.

PB0CI	FG			0x5000007	70	PUP PDN L		
Rese	erved	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-		PWM1_OUT	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit6	PWM	1_OUT : PWM ²	1 Output	Enable				
	0 = P	WM output disa	abled					
	1 = P	WM output ena	abled					
Bit5	INTE	Pin Change Ir	nterrupt e	enable bit				
	0 = In	terrupt disable	d					
	1 = In	terrupt enable	b					
Bit4	DD: D	Data Direction						
	0 = In	put						
	1 = O	utput						
Bit3	STR:	Pull Up/Down	Strength	Control				
	0 = Lo	ow Strength (1	00uA)					
	1 = H	igh Strength (5	mA)					
Bit2	PUP:	Pull up enable						
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = Disabled							
	1 = Enabled							
Bit0	LVL: Input Threshold level							
	0 = Low Threshold							
	1 = H	igh Threshold						

PB1CFG: PB1 configuration register.

PB1C	FG			0x5000007	71		0x00	
R/	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
AC	TL	PWM2_OUT	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit7	ACTL:	Active Level	of Outpu	t				
	0 = Ac	tive Low (PM	OS)					
	1 = Ac	tive High (NM	OS)					
Bit6	PWM2	2_OUT: PWM2	2 Output	Enable				
	0 = PV	VM output dis	abled					
	1 = PV	VM output ena	abled					
Bit5	INTE:	Interrupt not a	vailable					
D'14								
Bit4		ata Direction						
	0 = Inp							
D:10	1 = Ou		Otro o oth	Control				
Bit3		Pull Up/Down		Control				
		w Strength (1)						
Bit2		gh Strength (5						
ΔΙΙΖ	0 = Dis	Pull up enable	-					
	1 = En							
Bit1		Pull Down ena	ahle					
Bitt	0 = Disabled							
	1 = Enabled							
Bit0		nput Threshol	d level					
		w Threshold						
	1 = High Threshold							

PBnCFG: PBn configuration register. (n = 2, 3, 4)

PBnC	FG			0x50000072	/3/4		0x00		
Rese	erved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W	
-	-	-	INTE	DD	STR	PUP	PDN	LVL	
MS	MSB							LSB	
Bit5	INTE	: Interrupt not a	available			•			
Bit4	יחח	Data Direction							
DIL4	0 = Ir								
		utput							
Bit3		Pull Up/Down	Strength	Control					
	0 = L	ow Strength (1	00uA)						
	1 = H	igh Strength (5	imA)						
Bit2	PUP:	Pull up enable	·.						
	0 = D	isabled							
	1 = E	nabled							
Bit1	PDN:	Pull Down ena	able.						
	0 = D	isabled							
	1 = Enabled								
Bit0	LVL:	Input Threshol	d level						
	0 = Low Threshold								
	1 = High Threshold								

<u>PBmCFG:</u> PBm configuration register. (m = 5, 6, 7)

PBmC	CFG		0	x50000072	/3/4		0x00		
Rese	erved	Reserved	W	W	W	W	W	W	
	-	-	INTE	DD	STR	PUP	PDN	LVL	
M	MSB							LSB	
Bit5	INTE	: Pin Change	Interrupt ena	ble bit					
	0 = In	terrupt disable	ed						
	1 = In	terrupt enable	ed						
Bit4	DD: [Data Direction							
	0 = In	iput							
	1 = O	utput							
Bit3	STR:	Pull Up/Dowr	Strength Co	ontrol					
	0 = Le	ow Strength (*	100uA)						
	1 = H	igh Strength (5mA)						
Bit2	PUP:	Pull up enabl	e.						
	0 = D	isabled							
	1 = E	nabled							
Bit1	PDN:	Pull Down en	able.						
	0 = D	isabled							
	1 = Enabled								
Bit0	LVL: Input Threshold level								
	0 = Low Threshold								
	1 = H	1 = High Threshold							

<u>PCnCFG:</u> PCn configuration register. (n = 0, 1, 2)

PCnC	FG		0x5	0000078/	/9/A		0x00			
Rese	erved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W		
-	-	-	INTE	DD	STR	PUP	PDN	LVL		
MS	SB							LSB		
Bit5	INTE	: Pin Change Ir	nterrupt enable	bit						
	0 = Interrupt disabled									
	1 = In	iterrupt enable	d							
Bit4	DD: [DD: Data Direction								
	0 = In	iput								
	1 = O	utput								
Bit3	STR:	Pull Up/Down	Strength Contr	ol						
	0 = Lo	ow Strength (1	00uA)							
	1 = H	igh Strength (5	imA)							
Bit2	PUP:	Pull up enable								
	0 = D	isabled								
	1 = E	nabled								
Bit1	PDN:	Pull Down ena	able.							
	0 = D	isabled								
	1 = E	1 = Enabled								
Bit0	LVL:	Input Threshol	d level							
	0 = L	ow Threshold								
	1 = H	1 = High Threshold								

PC3CFG: PC3 configuration register.

PC3CI	FG		0>	<5000007	'B		0x00	
Rese	erved	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-		PWM2_OUT	INTE	DD	STR	PUP	PDN	LVL
MS	βB							LSB
Bit6	PWM2_OUT: PWM2 Output Enable							
	0 = P	WM output disa	abled					
	1 = P	WM output ena	abled					
Bit5	INTE	: Pin Change Ir	nterrupt enable	e bit				
	0 = Ir	iterrupt disable	d					
	1 = Ir	terrupt enabled	t					
Bit4	DD : [Data Direction						
	0 = Ir	iput						
	1 = O	utput						
Bit3	STR:	Pull Up/Down	Strength Cont	rol				
	0 = L	ow Strength (10	00uA)					
	1 = H	igh Strength (5	mA)					
Bit2	PUP:	Pull up enable						
	0 = D	isabled						
	1 = E	nabled						
Bit1		Pull Down ena	able.					
	0 = Disabled							
	1 = Enabled							
Bit0	LVL: Input Threshold level							
		0 = Low Threshold						
	1 = H	igh Threshold						

PC4CFG: PC4 configuration register.

PB4C	PB4CFG			0x5000007	C		0x00	
Rese	erved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W
-				DD	STR	PUP	PDN	LVL
MS	MSB							LSB
Bit5	INTE	: Interrupt not a	available					
Bit4	יחח	Data Direction						
DIL4	0 = lr							
		utput						
Bit3		Pull Up/Down	Strength	Control				
	0 = L	ow Strength (1	00uA)					
	1 = H	igh Strength (5	imA)					
Bit2	PUP:	Pull up enable	.					
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = D	isabled						
	1 = E	nabled						
Bit0	LVL: Input Threshold level							
	0 = L	ow Threshold						
	1 = H	igh Threshold						

PC5CFG: PC5 configuration register.

PC5C	FG			0x5000007	7D		0x00		
Rese	erved	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
-	-	PWM1_OUT	INTE	DD	STR	PUP	PDN	LVL	
MS	SB							LSB	
Bit6	PWM	PWM1_OUT: PWM1 Output Enable							
	0 = P	WM output disa	abled						
	1 = P	WM output ena	abled						
Bit5	INTE	: Interrupt not a	vailable						
Bit4	DD: [Data Direction							
	0 = Ir								
	1 = O	output							
Bit3	STR:	Pull Up/Down	Strength	Control					
	0 = L	ow Strength (1	00uA)						
		igh Strength (5							
Bit2		Pull up enable							
		isabled							
	1 = E	nabled							
Bit1		Pull Down ena	able.						
	0 = Disabled								
	1 = Enabled								
Bit0	LVL: Input Threshold level								
		0 = Low Threshold							
	1 = H	igh Threshold							

PC6CFG: PC6 configuration register.

PC6CI	PC6CFG			0x5000007	Έ		0x00	
Rese	erved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W
-		-	INTE	DD	STR	PUP	PDN	LVL
MS	MSB							LSB
Bit5	INTE	: Interrupt not a	available			•		
Bit4		Data Direction						
	0 = In	put						
	1 = O	utput						
Bit3	STR:	Pull Up/Down	Strength	Control				
	0 = Lo	ow Strength (1	00uA)					
	1 = H	igh Strength (5	imA)					
Bit2	PUP:	Pull up enable						
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = D	isabled						
	1 = E	nabled						
Bit0	LVL:	Input Threshol	d level					
	0 = Le	ow Threshold						
	1 = H	igh Threshold						

PC7CFG: PC7 configuration register.

PC7C	FG		C	x500007	F		0x00	
R/	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
AC	TL	PWM1_OUT	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit7	ACTL	.: Active Level	of Output					
	0 = A	ctive Low (PM	OS)					
	1 = A	ctive High (NM	OS)					
Bit6	PWM	1_0UT: PWM	1 Output Enab	le				
	0 = P	WM output dis	abled					
	1 = P	WM output ena	abled					
Bit5	INTE	: Interrupt not a	available					
Bit4		Data Direction						
	0 = In							
		utput						
Bit3		Pull Up/Down	-	rol				
		ow Strength (1						
		igh Strength (5						
Bit2		Pull up enable						
		isabled						
		nabled						
Bit1	PDN: Pull Down enable.							
	0 = Disabled							
		nabled						
Bit0		Input Threshol	d level					
		ow Threshold						
	1 = H	igh Threshold						

LEDIO: LED output configuration register.

LEDIO			0x50000059		0x00		
Reserved	Reserved	R/W	R/W	R/W	R/W	R/W	Reserved
		LEDEN	LEDCUR3	LEDCUR2	LEDCUR1	LEDCUR0	-
MSB							LSB
0 = 1 1 = 1 Bit4-1 LED 0000 000	EN: LED enal LED output dis LED output en CUR[3:0]: LE D = 0 mA 1 = 3 mA D = 6 mA and s	sabled abled D Current Con	trol				
The	The equation for this current is: I= 3mA x LEDCUR						

8.9 SHORT CIRCUIT PROTECTION CIRCUITS

BON provides support for Fuse Elimination and short circuit detection. The following sections will describe both functionalities in detail

8.9.1 Fuse Elimination Usage Description

Once enabled the fuse elimination circuit operates by automatically comparing the voltage between two input pins (PB6 and PB7). If the voltage difference between these pins exceeds a programmable voltage (Fuse Offset Voltage), a flag is set, allowing the program to detect the condition and act accordingly.

To use the fuse elimination feature the following setps must be taken:

- 1. Select the fuse offset value.
- 2. Enable the fuse detection
- 3. Execute a polling on the fuse detect flag at a suitable rate

8.9.2 Short Circuit Protection Usage Description

BON provides a short-circuit protection for the PWM1 and PWM2 when the PB1(PWM2) and PC7(PWM1) are used. This circuit operates by comparing a feedback input voltage with a programmable threshold value (using the ADC to measure this voltage) and automatically disabling the corresponding PWM (to a programmable safe state) in case of short-circuit detection.

The following sequence must be followed in order to protect against short-circuits in the PWM outputs:

- 1. Configure ADC settings
- 2. Select threshold and period
- 3. Enable ADC
- 4. Select appropriate sense level
- 5. Select a safe state
- 6. Enable Short Circuit Sense

8.9.3 Short Circuit Protected Related Registers

ADC1THRESH: ADC1 threshold value used to detect short circuit when the ADC is used to detect it.

ADC1THRESH			0x50000050		0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADC1TH_7	ADC1TH_6	ADC1TH_5	ADC1TH_4	ADC1TH_3	ADC1TH_2	ADC1TH_1	ADC1TH_0	
MSB							LSB	

<u>ADC1PERIOD</u>: ADC1 period (in conversion times) used to define the pooling of an input being tested for short circuit.

ADC1PERIOD			0x50000051		0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADC1PR_7	ADC1PR_6	ADC1PR_5	ADC1PR_4	ADC1PR_3	ADC1PR_2	ADC1PR_1	ADC1PR_0	
MSB							LSB	

ADC2THRESH: ADC2 threshold value used to detect short circuit when the ADC is used to detect it.

ADC2THRESH			0x50000052		0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADC2TH_7	ADC2TH_6	ADC2TH_5	ADC2TH_4	ADC2TH_3	ADC2TH_2	ADC2TH_1	ADC2TH_0	
MSB							LSB	

<u>ADC2PERIOD:</u> ADC2 period (in conversion times) used to define the pooling of an input being tested for short circuit.

ADC2PERIOD			0x50000053		0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADC2PR_7	ADC2PR_6	ADC2PR_5	ADC2PR_4	ADC2PR_3	ADC2PR_2	ADC2PR_1	ADC2PR_0	
MSB							LSB	

<u>PWMFUSE:</u> Fuse and Short Circuit Control Register

ADC11	HRESI	HOLD		0x50000058	3		0x00	
R/	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PWM1	ISCF	PWM2SCF	FUSEFLG	FUSEEN	PWM1SNSL	PWM2SNSL	FUSEOFF1	FUSEOFF0
MS	MSB							LSB
Bit7	PWM	1SCF: PWM1 S	Short Circuit De	tection Flag				
	0 = N	o short circuit d	etected					
	1 = S	hort circuit dete	cted					
Bit6	PWM	2SCF: PWM2 S	Short Circuit De	tection Flag				
	0 = N	o short circuit d	etected					
	1 = S	hort circuit dete	cted					
Bit5	FUSE	EFLG: Fuse Det	ection Flag					
	0 = Overcurrent not detected							
	1 = C	vercurrent dete	cted					
Bit4	FUSE	EEN: Fuse Enab	le Signal					
	0 = D	isable fuse elim	ination circuit					
	1 = E	nable fuse elimi	nation circuit					
Bit3	PWM	1SNSL: PWM1	Sense Level					
	0 = L	ogic low level ex	pected for nor	mal operation				
	1 = L	ogic high level e	expected for no	rmal operatior	ו			
Bit2	PWM	2SNSL: PWM2	Sense Level					
	0 = L	ogic low level ex	pected for nor	mal operation				
	1 = L	ogic high level e	expected for no	rmal operatior	ו			
Bit1-0	FUSE	EOFF[1:0]: Fuse	e offset level					
	00 = 190 mV							
	01 =	360 mV						
	10 =	670 mV						
	11 =	860 mV						

8.10 CLOCK SOURCES

BON provides three clock sources:

- Internal auxiliary oscillator running at 10kHz. (This oscillator is always running, even when the device is in sleep mode, but its power consumption is negligible)
- Internal RC oscillator running at 10MHz.
- Crystal oscillator (Typically 3.579545MHz)

BON starts from power-on reset using the internal auxiliary oscillator. From this point on the user may select the crystal or the RC oscillators.

The 10MHz RC oscillator may be used if a higher execution speed, albeit with lower frequency accuracy, is necessary for the application. The 10kHz oscillator may be used in power saving modes.

8.10.1 Clock Sources Characteristics

The following table defines the main characteristics of the clock sources:	

Table 19 - Clock Performance Specification, recommended operating conditions unless otherwise specified									
name	conditions	min	typ	max	unit				
Crystal Oscillator frequency			3.579545		MHz				
Frequency stability	Using defined crystal			TBD	ppm				
Auxiliary Oscillator	(Calibrated Frequency)		10		kHz				
Auxiliary Oscillator accuracy	Post-calibration to 10KHz, T _A =27°C			5	%				
RC Oscillator frequency			10		MHz				
RC Oscillator accuracy	Post-calibration to 10MHz, T _A =27°C			1	%				

8.10.2 Clock Related Registers

The following registers are used to control the behavior of the clock sources:

PMUCLK:	Processor Control register.
1 1110 0 1 1	i loooool ooliii oi logiotoi.

PMUCLK 0x5000000					0x15		
R/W	R/W	Reserved	R	R/W	R/W R/W I		
CKD1	CKD0	-	RCMON	XO_CK_ENB	RC_CK_ENB	CKSEL1	CKSEL0
MSB							LSB
Bit7-6	CKD[1:0]: Clock Freq	lency Divider				
	00 = Clo	ock Divided by	1				
	01 = Clo	ock Divided by	2				
	10 = Clo	ck Divided by	4				
	11 = Clo	ck Divided by	8				
Bit4	RCMON	I: RC Oscillato	r Monitor				
	0 = RC (Oscillator Inac	ive				
	1 = RC (Oscillator Activ	e				
Bit3	хо_ск	_ENB: Crystal	Oscillator Cor	ntrol			
	0 = Crys	tal Oscillator [Disable				
	1 = Crys	tal Oscillator E	Enable				
Bit2	RC_CK	ENB: RC Os	cillator Control				
	0 = RC (Oscillator Disa	ble				
	1 = RC (Oscillator Enal	ble				
Bit1-0	CKSEL	[1:0]: Clock Se	lect				
	00 = 10	KHz Auxiliary	Clock				
	01 = 10	MHz RC Oscill	ator Clock*				
	10 = Cry	vstal Oscillator	Clock				
	11 = No	t used					
*Note:	This is the	e clock selecte	d after Power	-On-Reset and	for clock fault c	ondtion	

8.10.3 Clock Sources Usage Description

Upon Reset or Power-On Reset the system starts using the internal RC 10MHz oscillator.

Depending on the application requirements the designer can:

- Enable or disable the internal RC oscillator
- Enable or disable the external crystal
- Select the system clock source: RC or Crystal
- Enable the clock monitor interrupt to detect and process eventual failures in either the crystal or RC clock sources

Some peripherals require the crystal clock in order to operate properly:

Table 20 - Peripherals with specific clock source requirements							
Peripheral	Clock Required	Comments					
UART	Crystal (@3.579545MHz) or 10MHz RC Oscillator						
LIN	Crystal (@3.579545MHz)	Required in master mode only. In slave mode it can use the RC oscillator (10MHz).					

8.10.4 Power Management Unit (PMU)

BON implements a power management unit. Its main characteristics are:

- HW reset Affects all aspects of BON
- SW reset Does not affect clock nor brownout setup
- Selectable Sleep mode and Halt Mode
- Programmable brownout detector

8.10.5 PMU Registers

BON implements the following registers:

PMURST:	Processor	control	register.
1 10 1 10 1 1	1 10000001	001101	regiotor.

PMURST		0x5000001 0x01							
W	W	R/W	R/W Reserved Reserved R R/W						
HWRST	SWRST	DLEEP	-	-	-	BROUT	PORF		
MSB							LSB		
0	WRST: Hardy								
Bit6 S 0	WRST: Softw = Idle	are reset	-	d after reset p					
	LEEP: Deep /riting:								
R	eading:	·		Put the system		p - Halt			
-	BROUT: Brownout indicator 0 = No brownout / 1 = Brownout								
W	 PORF: Power-On Reset flag Writing: 0 = Clear POR / 1 = No effect Reading: 0 = POR flag already cleared by application 1 = The system just came out of POR or HW Reset 								

PMUBOR: BOR Control.

РМИВС	DR		0x50000002		0x00				
R/W	Reserved	Reserved	Reserved	R/W	R/W R/W R/W				
BORE	N -	-	-	BORRST	BORINT	BOUTVALUE1	BOUTVALUE0		
MSB							LSB		
Bit7	BOREN: Browne 0 = Brownout dis 1 = Brownout er	sabled (for B2	. ,		,				
Bit3	BORRST: Brown 0 = Disable Brown 1 = Enable Brown	vnout based re	eset (for B2 pa						
Bit2	BORINT : Brown 0 = Brownout int 1 = Brownout int	errupt disable							
Bit1-0									

PMU_MISC:

PMU_MISC			0x50000005		0x00			
R/W	Reserved R/W R/W R/W R/W		R/W	R/W				
PMU_MI R SC_SER FAST		RTSEL_A2	RTSEL_A1	RTSEL_A0	RTSEL_B2	RTSEL_B1	RTSEL_B0	
MSB							LSB	
Bit7	PMU_MISC_	SERFAST: M	ICU serial inte	erface clock	control.			
	0 = Serial inte	erface clock r	ate depends (on clock divis	sion control C	KD[1:0].		
	1 = Serial inte	erface clock r	uns at full rate	e disregard o	f CKD[1:0].			
Bit6	Reserved							
Bit5-3	RTSEL_A[2:	0]: Real-time	debugging po	ort A (1 st pin)	selection.			
	000 = Disable	e debugging p	oort A.					
	001 = 10KHz	auxiliary cloo	:k.					
	010 = 10MHz	RC oscillato	r clock.					
	011 = Crystal	l oscillator clo	ck.					
	101 = Fuse d	etector outpu	t.					
	110 = Browne	out reset.						
	111 = Reserv	ved						
	Others = X.							
Bit2-0	RTSEL_B[2:	0] : Real-time	debugging p	ort B (2 nd pin) selection.			
	000 = Disable	e debugging p	oort B.					
	001 = Full rat	e clock.						
	010 = Freque	•						
	011 = MCU s	erial interface	e clock.					
	100 = ADC c	lock.						
	101 = Fuse d							
	110 = Charge	e pump clock.						
	Others = X.							

PMUVREG1: VREG Control1.

PMUBOR		0x50	01800D		0x04		
R/W Reserved		Reserved	R/W	R/W	R/W	R/W	R/W
QPENVDD3IO -		-	RCAL1	RCAL0	XTALBIAS2	XTALBIAS1	XTALBIAS0
MSB							LSB
Bit7 QPENVDD3IO : Charge Pump Enable for 3.3V IO Supply 0 = disabled 1 = enabled							

PMUVREG2: VREG Control2.

РМИВС	DR	0x5001800F 0x00						
Reseve	ed R/W	R/W R/W R/W R/W R/W						
-	ADCCYC2	ADCCYC1	ADCCYC0	QPENVDD3 ANA	QPENVDD FLA	QPENVDD MCU	QPENVDD3 DIG	
MSB	3						LSB	
Bit3	QPENVDD3ANA:	Charge Pump	Enable for 3.3V	Analog Supply				
	0 = disabled							
	1 = enabled							
Bit2	QPENVDDFLA: C	harge Pump Ei	hable for 2.6V F	lash Supply				
	0 = disabled							
	1 = enabled							
Bit1		Charge Pump E	nable for 1.8V	MCU Supply				
	0 = disabled							
	1 = enabled							
Bit0	QPENVDD3DIG : Charge Pump Enable for 3.3V Digital Supply							
	0 = disabled							
	1 = enabled							

8.10.6 PMU Usage Description

The PMU module allows for the control of reset, deep sleep (halt), sleep, and brownout.

8.10.6.1 PMU control of Reset:

There are two forms of reset that can be issued:

- Hardware reset: In this reset all peripherals are reset, the 10 KHz clock is selected and all other clock sources are disabled, but the brownout selection is kept.
- Software reset: In this reset all peripherals are reset but the clock setup is kept unchanged along with the brownout selection.

8.10.6.2 PMU control of sleep and deep sleep (halt) modes:

The PMU can set the system into sleep or deep sleep (halt) modes.

In the deep sleep mode:

- the CPU is halted
- Any enabled clock source will continue to operate
- The three timers (Timer0, Timer1 and Timer2) and the SysTick Timer will stop operating
- All other peripherals will keep running (if enabled and fed by their required source clock)
- The system will leave the deep sleep (halt) mode only through a reset or POR (Power-On Reset). The sources of a reset can be the wakeup timer or any peripheral that generates an interrupt independently of the interrupt being enabled by the NVIC module.(Nested Vector Interrupt Controller)

Note: For those peripherals that have in their registers a bit that locally enables the interrupt this register has to be enabled in order to reset the system. Example: For the GPIOs ports PORTA, PORTB and PORTC the INTE bits of the I/O pins selected to reset the part upon change must be set.

In the sleep mode:

- 1. the CPU is halted
- 2. Any enabled clock source will continue to operate
- 3. All timers (Timer0, Timer1 and Timer2) and the SysTick Timer will continue operating
- 4. All other peripherals will keep running if enabled and fed by their required source clock
- 5. Besides a POR and/or reset the system will leave the sleep mode also through an interrupt; the sources of an interrupt can be any peripheral generating an interrupt.

Note: The interrupt must be enabled by the NVIC module.(**N**ested **V**ector Interrupt **C**ontroller) <u>and</u> for those peripherals that have in their registers a bit that locally enables the interrupt this register also has to be enabled in order to generate an interrupt and wakeup the system from sleep.

Example: For the GPIOs ports PORTA, PORTB and PORTC the INTE bits of the I/O pins selected to reset the part upon change must be set.

8.10.6.3 PMU control of Brownout:

The PMU controls the brownout. It entails:

- Enabling or disabling the brownout circuit
- Selecting the behavior when a brownout is detected:
 - Generate an interrupt
 - Reset the system
- Selecting the brownout voltage level

8.11 WAKE-UP TIMER

In addition to the Timer0/1/2 BON implements a timer capable of waking-up the microcontroller from a sleep state.

The wake up timer is a timer used to allow for recovery from deep sleep, including when the microcontroller is disconnected from its power supply.

The following register controls the wake-up timer:

WKPTIME: Wakeup timer control.

WKPTIME		0	x50000004		0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
MANT3	MANT2	MANT1	MANT0	EXP3	EXP2	EXP1	EXP0	
MSB							LSB	
Bit7-4 MANT [3:0]: Mantissa of the wakeup timer Bit3-0 EXP [3:0]: Exponent of the wakeup timer (range: 012) WakeupPeriod = Mantissa * 2 ^(Exponent+1) / SystemClock								

For instance, a value of 0x54 would give a time of: (Assuming the application is running from the 10 kHz internal oscillator)

WakeupPeriod = $5 * 2^{(4+1)} / 10$ kHz = 16msec

9.0 REVISION HISTORY

Rev #	Date	Action	Ву
0.1	20 Jan 2011	Initial Draft	CG
0.2	27 Jan 2011	Second Draft	CG
0.3	04 Mar 2011	Third Draft	CG
0.4	30 Mar 2011	Fourth Draft	CG
0.5	18 Apr 2011	Fifth Draft	DKM
0.6	6 Jun 2011	Sixth Draft, minor corrections	DKM
1.0	24 Nov 2015	1rst indie version from uS.	CR
1.1	31 Jan 2016	2 nd indie revision (original Bon rev 0.6)	CR
2.0	13 Oct 2016	Updated version from uS. rev2	CR

10.0 CONTACTS

United States

32 Journey Aliso Viejo, California 92656, USA Tel: +1 949-608-0854 sales@indiesemi.com

China

232 Room, Donghai Wanhao Plaza, South Hi-tech 11th Road, Hi-tech Industry Park, Nanshan District, Shenzhen, China. Tel: +86 755-86116939

Scotland

5th Floor, The Auction House, 63a George Street Edinburgh EH2 2JG Scotland Tel: +44 131 718 6378

http://www.indiesemi.com/

Important Notice

indie semiconductor reserves the right to make changes, corrections, enhancements, modifications, and improvements to indie semiconductor products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on indie semiconductor products before placing orders. indie semiconductor products are sold pursuant to indie semiconductor's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of indie semiconductor products and services described herein. indie semiconductor assumes no liability for the choice, selection, application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by indie semiconductor by this document.

The materials, products and information are provided "as is" without warranty of any kind, whether express, implied, statutory, or otherwise, including fitness for a particular purpose or use, merchantability, performance, quality or non-infringement of any intellectual property right. Indie semiconductor does not warrant the accuracy or completeness of the information, text, graphics or other items contained herein. indie semiconductor shall not be liable for any damages, including but not limited to any special, indirect, incidental, statutory, or consequential damages, including without limitation, lost of revenues or lost profits that may result from the use of the materials or information , whether or not the recipient of material has been advised of the possibility of such damage.

Unless expressly approved in writing by two authorized indie semiconductor representatives, indie semiconductor products are not designed, intended, warranted, or authorized for use as components in military, space, or aircraft, in systems intended to support or sustain life, or for any other application in which the failure or malfunction of the indie semiconductor product may result in personal injury, death, or severe property or environmental damage.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016, indie semiconductor, all Rights Reserved