

iND86201 "Ernie"

indie's highly integrated, microcontroller-based glucose measurement subsystem

Preliminary Datasheet

Table	of	Contents
	•••	0011101110

1.0	SYSTEM OVERVIEW					
1.1	Introduction					
1.2	Key Features	7				
1.3	Package Variants	8				
1.4	Application Context	8				
2.0	MEMORY	9				
2.1	Register Description Convention	9				
2.2	Top Level Memory Map	10				
3.0	SYSTEM AND PERIPHERAL IMPLEMENTATION	11				
3.1 3.1.2 3.	Digital Functions1Processor2Flash Memory3Flash Memory Controller4Data Memory5Clock Sources6Timer0,1,27Timer33Wake-Up Timer9Watch Dog Timer10Nested Vector Interrupt Controller11Crystal Oscillator and Real-time Clock12LCD13GPIO14SPI Interface15UART Interface16I²C Interface17USB Interface18Pulse Width Modulator19Internal Interface Bus	11 13 14 22 22 28 30 34 35 36 37 39 49 59 63 68 79 84 87				
3.2 3.2.2 3.2.2 3.2.2 3.2.2 3.2.2 3.2.5 3.2.5	Analog Functions1Sensor Configurations2Analog Sensor Interface and Switching3Voltage Reference4SG Reference5Source DACs6Transimpedance Amplifiers7Sigma Delta ADC	89 90 98 98 99 102 103				

	SETTEONBOCTOR			
3.2. 3.2.	8 Auxiliary 8-bit ADC 9 Power Management Unit	108 113		
3.3	Design for Test Features	122		
4.0	ELECTRICAL CHARACTERISTICS	123		
4.1 4.1. 4.1. 4.1.	Electrical Conditions1Absolute Maximum ratings2Operating conditions3Electrical Characteristics over Operating Range	123 123 123 124		
5.0	PACKAGE	129		
5.1	Ball Assignment	129		
5.2	Signal Descriptions	130		
5.3 PACKAGE DRAWING BGA PACKAGE				
5.4	Lead Assignment (QFN 10x10, 88 Lead)	134		
5.5	Signal Description – QFN Package	135		
5.6	Package Drawing – QFN Package	137		
6.0	REVISION HISTORY	138		
7.0	REFERENCES	139		
8.0	CONTACTS	140		

Table of Figures

Figure 1: Digital Engine Block Diagram	12
Figure 2: Flash Memory State Machine Diagram	16
Figure 3: Clock Management System	25
Figure 4: RTC alarm timing example	37
Figure 5: RTC overflow timing example	38
Figure 6: Quadplexed LCD Electrode Connections	41
Figure 7: Quadplexed LCD Drive Waveform Example	43
Figure 8: Quadplexed LCD Drive Waveform Example	44
Figure 9: Connecting Pins for LCD Charge Pump and Divider	45
Figure 10: GPIO Functional Diagram	49
Figure 11: SPI Timing Diagram	60
Figure 12: Slave Mode Timing w/CLK_ST_ENB=1 (Reception, 7-bit Address)	70
Figure 13: Slave Mode Timing w/CLK_ST_ENB=0 (Reception, 7-bit Address)	70
Figure 14: Slave Mode Timing (Transmission, 7-bit Address)	71
Figure 15: Slave Mode Timing (Reception, 10-bit Address)	71
Figure 16: Slave Mode Timing (Transmission, 10-bit Address)	71
Figure 17: Master Timing Waveform (Transmission)	74
Figure 18: Master Timing Waveform (Reception)	75
Figure 19: Switch matrix shown with external components for ground-referenced sensor	92
Figure 20: Sigma Delta ADC Input Channel Multiplexing	98
Figure 21: SG Trim DAC Circuit	99
Figure 22: Sub-ranging (Coarse + Fine) DAC Architecture	100
Figure 23: External Voltage Reference for Amplifier G	102
Figure 24: External Voltage Reference for Amplifier A	103
Figure 25: 8-bit ADC Input Settling Time	109
Figure 26: 8-bit ADC Reference Voltage Equations	110
Figure 27: Power Management System Diagram	116
Figure 28: BGA Package Ball Assignment (Top View)	130
Figure 29: BGA Package Outline Drawing	133

Indie

Figure 30: QFN Package Ball Assignment (Top View)	134
Figure 31: QFN Package Outline Drawing	137

Table of Tables

Table 2.1 System Memory Map	10
Table 2.2 Peripheral Fast Access Memory Map (7-bit address space)	10
Table 2.3 Peripheral Slow Access Memory Map (16-bit address space)	11
Table 4.4 Test Signals	13
Table 3.5 Flash Memory Map	14
Table 3.6 Flash Controller Memory Map	14
Table 3.7 Interrupt Vectors	
Table 3.8 Oscillator Pins	
Table 3.9 LCD signals	
Table 3.10 LCD 1/3 Bias Drive Voltage Levels	41
Table 3.11 LCD Select and Deselect Voltages (COM0 through COM3)	
Table 3.12 LCD 1/3 Bias Drive Voltage Levels	45
Table 3.13 LCD Registers	
Table 3.14 GPIO Port Map	
Table 3.15 GPIO Registers	51
Table 3.16 SPI (Master) Signals	59
Table 3.17 SPI Registers	60
Table 3.18 UART Signals	63
Table 3.19 UART Registers	64
Table 3.20 I2C Signals	68
Table 3.21 I2C Registers	75
Table 3.22 USB Signals	79
Table 3.23 USB Registers	80
Table 3.24 PWM Signal	
Table 3.25 PWM Prescaler Divider Values	
Table 3.26 PWM Registers	
Table 3.27 Sensor interface	
Table 3.28 Gain Setting Pins	

Indie

Preliminary Datasheet iND86201 "Ernie"

Table 3.29 Reference resistor and Thermistor Interface	
Table 3.30 Analog Voltage Reference Pins	94
Table 3.31 Auxiliary 8-bit ADC registers	111
Table 3.32 Power Management Signals	113
Table 3.33 Analog Boost Regulator Signals	
Table 4.34 Absolute maximum ratings	
Table 4.35 Operating Conditions	
Table 4.36 Supply current	
Table 4.37 Supply Voltage monitor	124
Table 4.38 General Purpose I/O	125
Table 4.39 Buzzer Driver	125
Table 4.40 Source DAC Voltage	126
Table 4.41 Transimpedance Amplifier	127
Table 4.42 Switch Matrix	127
Table 4.43 Sigma Delta ADC	128
Table 4.44 LCD	128
Table 5.45 Package Signal Descriptions	130
Table 5.46 QFN Package Signal Descriptions	
Table 6.47 Revision History	138

1.0 SYSTEM OVERVIEW

1.1 INTRODUCTION

The Ernie System-in-Package (SiP) platform for glucose meter applications provides industry-leading frontend accuracy, power consumption, display and connectivity features at a not-seen-before integration and cost level. This is achieved by tight integration with the application requirement and special-purpose hardware designed to reduce common measurement errors.

Traditional glucose meters often use a separate micro-controller (MCU) and analog front-end (AFE) products, making the end-user of this approach pay for unnecessary additional packaging, increased PCB space, and significant hardware and embedded software design effort to test the communications and data transfer between the MCU and AFE. The Ernie device overcomes these limitations by providing a single small system-in-package (SiP) that not only combines a high performance low power ARM Cortex-M0 MCU and glucose measurement AFE dice into a single package, but also functionally maps the AFE functions within the MCU address space for easy error-free software development.

1.2 KEY FEATURES

- ARM Cortex M0 32-bit micro-controller
- 160 kByte eFlash memory (automotive grade reliability)
- 8 kByte SRAM
- One 17-bit signed sigma-delta ADC + one 8-bit auxiliary ADC
- Two 14-bit DACs
- Integrated sensor interface switch matrix supporting up to 9 sensor electrodes
- USB 1.1 interface including all associated power and clock management
- 32.768 kHz crystal oscillator
- 12 MHz RC oscillator
- Integer-N PLL using crystal reference
- RTC function with wake-up capability
- Integrated 4x30 LCD controller
- UART, SPI and I2C Hardware Interfaces
- 27 digital GPIO pins
- 2 kV HBM ESD protection on all pins (8 kV HBM ESD on select sensor interface pins)
- Temperature Range -40°C to +85°C
- Multiple package options

1.3 PACKAGE VARIANTS

Ernie comes in two package options as described later in this document. The difference in package options is limited to the number of sensor contacts in the analog front end and the total number of GPIOs available to the end application. All other features remain the same in both packages.

For a detailed description of these differences please see the analog front end sensor description in section 3.2 and the package pin assignments in Section 5. A brief summary of the high level difference is shown here:

Package	Pins	Size (mm)	Pitch (mm)	GPIOs	Sensor I/F
BGA	120	8x8	0.65	27	22
QFN-EP	88	10x10	0.4	20	9

1.4 APPLICATION CONTEXT

This document defines the functionality of Ernie, a hybrid chip consisting of a microcontroller with peripherals, referred to as the digital functions, and a dedicated data acquisition circuitry, referred to as the analog functions, to be used in a portable meter for measurement of blood glucose or other analytes. The meter is designed to be compact, low cost, battery powered and intended for in vitro diagnostic use. It can be used in conjunction with electrochemical glucose test strips. The device can support different sensor types using software-controlled pin reconfiguration in the switch matrix part of the analog front-end.

Under digital engine software control, the analog engine can apply voltages to a sensor and measure resulting currents in a potentiostat configuration. The analog engine can also be used to measure and compensate for the effects of ambient temperature using measurements of an external thermistor. The digital engine interfaces with a liquid crystal display (LCD) that can display results or operator prompting. The digital engine can transfer stored results to an external computer via a USB interface for analysis or printing. The digital engine supports a real-time clock that is used in a firmware-based calendar for time-stamping glucose measurement results and/or any scheduling activity.

2.0 MEMORY

2.1 REGISTER DESCRIPTION CONVENTION

The following tabular format is used to describe device registers throughout this document. The first row of a table enumerates the register name, the starting hexadecimal address, and the reset or default hexadecimal value. The second row indicates whether associated bits are read only, write only, or read/write (R/W). The third row enumerates bit names for the lower order byte, with most-significant bit to the left and least-significant to the right. For a 16-bit register, the next byte contains bit names for the next most-significant eight bits. Should the read/write status of any bits differ from that for the lower order byte, this row may be preceded by a read/write status row. If no difference, no additional read/write status row is included. For a 32-bit register, two additional bytes are used to enumerate bit names for the most-significant sixteen bits. Either may be preceded by a read/write status row, but not if there is no difference from the next lower byte. The next row of the table indicates that bit ordering is MSB to LSB. The last row summarizes the naming convention for the register and provides a brief functional description.

Descriptive register title								
Register Na	Register Name Starting Address (Hex) Reset Value (Hex)						ex)	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	
MSB							LSB	
Bit usage description								

The format for an 8-bit register definition is below:

The format for a 32-bit register definition is below:

Descriptive register title								
TMRREG		0x50020000			0x0000000			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	
Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	
Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	
Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	
MSB							LSB	
Bit usage description								

2.2 TOP LEVEL MEMORY MAP

All processor and peripheral memory is part of a unified memory map, as shown below:

Table 2.1 System Memory Map						
Address	Memory	Description	Reference			
0x00000000 - 0x00027FFF	Flash	160 Kbyte Flash Memory				
0x00028000 - 0x0003FFFF	N/A	Reserved				
0x00040000 - 0x000400FF	Flash	256 Byte 1st NVR Sector				
0x00040100 - 0x000401FF	Flash	256 Byte 2nd NVR Sector				
0x00040200 - 0x1FFFFFFF	N/A	Reserved				
0x20000000 - 0x20001FFF	SRAM	8 Kbyte SRAM				
0x20002000 - 0x4FFFFFFF	N/A	Reserved				
0x50000000 - 0x5000007F	Peripheral	128 Byte peripheral fast access	Table 2.2			
0x50000080 - 0x50000085	Peripheral	Block Transfer control				
0x50000086 - 0x5000FFFF	N/A	Reserved				
0x50010000 - 0x5001FFFF	Peripheral	64 Kbyte peripheral slow access	Table 2.3			
0x50020000 - 0x5002001F	Peripheral	32 Byte timer control				
0x50020020 - 0x50020047	Flash	Flash program/erase control				
0x50020048 - 0xDFFFFFFF	N/A	Reserved				
0xE0000000 - 0xE00FFFFF	Private	ARM peripherals				
	peripheral					
	bus					
0xE0100000 - 0xEFFFFFFF	N/A	Reserved				
0xF0000000 - 0xF0001FFF	System ROM	ARM core IDs				
	tables					
0xF0002000 - 0xFFFFFFFF	N/A	Reserved				

Table 2.2 Peripheral Fast Access Memory Map (7-bit address space)							
Address	Peripheral	Description	Max. Size	Reference			
0x50000000 - 0x50000007	PMU	Power management control	8 bytes				
0x5000008 - 0x500000F	I2C	I2C bus control	8 bytes	[1]			
0x50000010 - 0x50000017	UART	UART control	8 bytes	[1]			
0x50000018 - 0x5000001B		Reserved	4 bytes				
0x5000001C - 0x5000001F	SPI	SPI bus control	4 bytes	[1]			
0x50000020 - 0x5000002F	ADC16	16-bit Sigma-delta ADC	16 bytes				
0x50000030 - 0x50000037	ADC8	8-bit Charge-sharing ADC	8 bytes				
0x50000038 - 0x5000003F		Reserved	8 bytes				
0x50000040 - 0x5000005F	AFE	Analog Front-End Control	32 bytes				
0x50000060 - 0x5000006F	RTC	Real time clock control	16 bytes				
0x50000070 - 0x50000077	Timer3	Timer 3 control	8 bytes				
0x50000078 - 0x5000007F	GPIO	GPIO Byte control	16 bytes	Table 3.15			

Table 2.3 Peripheral Slow Access Memory Map (16-bit address space)										
Address	Peripheral	Description	Max. Size	Reference						
0x50010000 - 0x5001033F	GPIO	GPIO bit control	1K bytes							
0x50010340 - 0x5001133F		Reserved	4K bytes							
0x50011340 - 0x5001173F	USB	USB end-point buffer memory	1K bytes							
0x50011740 - 0x500117FF	USB	USB Special Function Registers	192 bytes							
0x50011800	USB	USB IP Top-Level Register	1 byte							
0x50018001 - 0x5001807F		Reserved								
0x50018080 - 0x50018087	GPIO	PortB_Config	8 bytes							
0x50018088 - 0x5001808F	GPIO	PortC_Config	8 bytes							
0x50018090 - 0x50018097	GPIO	PortD_Config	8 bytes							
0x50018098 - 0x5001809F	GPIO	PortE_Config	8 bytes							
0x500180A0 - 0x500180BF	LCD	LCD driver control	32 bytes	Table 3.13						
0x500180C0 - 0x500180CF	PWM	Pulse Width Modulator Control	16 bytes	Table 3.26						
0x500180D0 - 0x500180D7	LDO	LDO regulator control	8 bytes							
0x500180D8 - 0x500180DF		Reserved								
0x500180E0 - 0x500180E7	CLK	Clock source trim settings	8 bytes							
0x500180E8 - 0x500180F7		Reserved								
0x500180F8 - 0x500180FF	TEST	Debug test bus addressing	8 bytes							

3.0 SYSTEM AND PERIPHERAL IMPLEMENTATION

3.1 DIGITAL FUNCTIONS

Ernie digital controller uses an ARM M0 Core microcontroller with embedded Flash and SRAM memory as well as 3 general purpose Timers (also referred to as "Clough" or "CM0160K8" hereinafter). This core CPU handles control, user interface, data processing, I/O, and timing functions. Ernie SiP device contains the Clough, with an analog ASIC die with oscillators, SPI, UART and I2C I/O logic, USB interface, real-time clock, interval timers, general purpose I/O pins, and interrupt vectoring logic, LCD controller and the glucose meter analog front-end. Button or switch inputs can be handled using general purpose I/O pins.

A description of digital engine functions follows after the block diagram shown below:

semiconductor

Preliminary Datasheet iND86201 "Ernie"

Figure 1: Digital Engine Block Diagram

3.1.1 Processor

The ASIC includes an embedded microcontroller subsystem based upon the ARM Cortex M0 core. It also includes a 160 Kbyte program flash memory and 8 Kbyte SRAM. It includes three 32-bit timers, a 16-bit timer, a dedicated watchdog timer and a wakeup timer. Additionally, it includes a Nested Vector Interrupt Controller (NVIC) to schedule hardware interrupts, and a Wakeup Interrupt Controller (WIC), which enables the control of the various power modes. The ARM Cortex M0 implementation supports 8-bit, 16-bit, and 32-bit reads/writes to peripherals.

More detailed information regarding the Ernie internal MCU "Clough", with M0 registers and included peripherals can be found in reference [1], though all relevant information is excerpted in appropriate sections in this document.

3.1.1.1 Debug Interface

An SWD-compliant 2-wire debug interface is implemented to access the processor and all memory mapped peripherals, as described below. Breakpoints and watch-points are supported. Trace capability is not supported on the Cortex M0 processor.

Table 4.4 Test Signals								
Pin Name	Description							
SWCLK	SerialWire Clock – SerialWire clock input connection. To minimize power dissipation, this pin should be connected to an external 10 K Ω pull-down resistor to GND.							
SWDIO	SerialWire Data – SerialWire data I/O connection. To minimize power dissipation, this pin should be connected to an external 10 K Ω pull-down resistor to GND.							
TMS	Test Mode Select input connection. Should be connected to GND in application PCB.							

3.1.2 Flash Memory

The device contains 160 Kbyte of embedded Flash based non-volatile program memory. Endurance is greater than 100,000 write cycle endurance, so that part of this memory may also be used for storing clinical results.

The address space of this memory is from 0×0000000 to $0 \times 00027FFF$. Since this space includes the boot vector, the microcontroller boots from an address configured in this flash memory, and user code will typically execute from this memory as well.

The flash memory is arranged in 2kB blocks, each of which is further comprised of 256B sectors. Memory can be erased either one sector or one block at a time, and can be written one byte at a time. These addresses cannot be written to directly. The writing and erasing of memory is handled by a memory-mapped Flash controller peripheral described in Section 3.1.3 Flash Memory Controller.

Note: The sector starting at $0 \times 00027F00$ is reserved for Indie production test use and cannot be written or erased by the user code. Consequentially, the block starting at 0×00027000 cannot be erased using the block erase command. All other sectors in this block can still be erased and bytes in these sectors can be written to by the user code.

	Table 3.5 Flash Memory Map									
Starting	Ending Address	Description								
Address										
0x00000000	0x000277FF	Read only access FLASH. Each block and sector can be erased and bytes can be written using flash controller peripheral.								
0x00027800	0x00027EFF	Read only access FLASH. Each sector can be erased and bytes can be written using flash controller peripheral. This block cannot be erased using block erase.								
0x00027F00	0x00027FFF	Read only access FLASH. This sector cannot be modified and typically contains Indie-specific information written during production test.								

3.1.3 Flash Memory Controller

The flash memory can be written and erased using a memory-mapped flash control peripheral. To avoid unintentional modification to the flash memory, an unlocking scheme is implemented which requires multiple sequential operations in a fixed order in order to erase or write the flash contents.

Flash byte writes complete within 20µs, while erase operations can take up to 10ms to complete.

The flash cannot be read during a write or erase operation. Since program code typically resides in flash, this will result in the program stalling for the duration of the write / erase operation unless counter-measures are taken. If continued program execution during flash modification is required, then any code which must continue to run should execute from SRAM during the flash write/erase to avoid the processor stalling from attempting to fetch its code from the flash memory.

Furthermore, the interrupt vector table is located in flash memory. If an interrupt occurs and it is enabled, then the MCU will attempt to retrieve the interrupt service routine's address from the flash memory. If the flash is busy performing a write or erase when this occurs, the processor will halt until the interrupt vector can be read from the flash. The interrupts numbered 0, 1, 2 and 16 are cached so that the vector fetch will not be stalled by the flash unavailability. So for these interrupts, if the service routine is mapped to a function in SRAM then the interrupt servicing will not stall the MCU during flash modification operations. Other interrupts should be disabled prior to initiating the flash operation if a MCU stall caused by their servicing must be avoided. Disabled interrupts will still pend, so re-enabling them after completion of the flash modification operation will cause any of the disabled interrupts which had occurred to be serviced at that time.

	Table 3.6 Flash Controller Memory Map										
Address Register R/W Description											
	Name										
0x50020020	FLADDR	W	Target address for write/erase operation. In byte writes, this is								
			the read address of the flash to be written to. In erase modes,								
			it is a read address inside the block or sector to be erased.								
			This register must be written in the correct sequence or the								
			operation will fail.								
			This register must be written with a 32 bit access.								

0x50020024	FLWRDT	W	Content to be written into the target byte. Bits 31 to 8 are
			ignored. This register must be written in the correct sequence or the operation will fail.
0x50020028	UNLBWR	W	Control register to unlock byte write. A value of 0x55555555 must
			be written to this address at the correct point in the byte write
			sequence or the operation will fail.
			This register must be written with a 32 bit access.
0x5002002C	BWRSTRT	W	Control register to start a byte write. A value of OxAAAAAAAA
			must be written to this address at the correct point in the byte
			write sequence or the operation will fail.
			This register must be written with a 32 bit access.
0x50020030	UNLSER	W	Control register to unlock a sector erase. A value of 0x66666666
			must be written to this address at the correct point in the sector
			erase sequence or the operation will fail.
			This register must be written with a 32 bit access.
0x50020034	SERSTRT	W	Control register to commit a sector erase. A value of 0x99999999
			must be written to this address at the correct point in the sector
			erase sequence or the operation will fail.
			This register must be written with a 32 bit access.
0x50020038	UNLBLKER	W	Control register to unlock a block erase. A value of 0x7777777
			must be written to this address at the correct point in the sector
			erase sequence or the operation will fail.
			This register must be written with a 32 bit access.
0x5002003C	BKERSTRT	W	Control register to commit a block erase. A value of 0x88888888
			must be written to this address at the correct point in the sector
			erase sequence or the operation will fail.
			This register must be written with a 32 bit access.
0x50020040	FLSCTRL	R/W	[2:0]: read wait cycle setting (to allow use of clock frequency
			faster than 16MHz)
		R/W	[5:3]: write/erase clock frequency wait cycle setting (to allow
			use of clock frequency faster than 16MHz)
		R	[6]: read value is 1 when byte write is in progress
		R	[7]: read value is 1 sector erase is in progress
		R	[8]: read value is 1 block erase is in progress
0x50020044	FLSCP	W	Code protection control register. Write a value of 0xF2E11047 to
			disable the SerialWire interface. Write 0x00000000 to enable it.
		1	This register must be written with a 32 bit access.

3.1.3.1 Flash Memory Control State Machine

Figure 2: Flash Memory State Machine Diagram

3.1.3.2 Flash Control Registers Detailed Description

Flash Write/Erase Destination Address										
FLADDR		0x50020020			0xxxxxxxx					
W	W	W	W	W	W	W	W			
FLADD7	FLADD6	FLADD5	FLADD4	FLADD3	FLADD2	FLADD1	FLADD0			
FLADD15	FLADD14	FLADD13	FLADD12	FLADD11	FLADD10	FLADD9	FLADD8			
FLADD23	FLADD22	FLADD21	FLADD20	FLADD19	FLADD18	FLADD17	FLADD16			
FLADD31	FLADD30	FLADD29	FLADD28	FLADD27	FLADD26	FLADD25	FLADD24			
MSB							LSB			
Bit31-0 FLADD[31:0] Target address for write/erase operation. In byte writes, this is the read										
address of	the flash to	be written t	co. In erase	modes, it i	s a read addi	ress inside t	he block or			
sector to b	e erased. T	his register	must be writ	ten in the c	orrect sequer	nce or the op	eration			
will fail.										
This regist	er must be w	ritten with a	a 32 bit acce	SS.						
Flash Write	Data Byte									
FLWRDT		0x50020024			0xxxxxxxx					
W	W	W	W	W	W	W	W			
FLDT7	FLDT6	FLDT5	FLDT4	FLDT3	FLDT2	FLDT1	FLDT0			
-	-	-	-	-	-	-	-			
-	-	-	-	-	-	-	-			
-	-	-	-	-	-	-	-			
MSB							LSB			
Bit7 -0 FLD	T[7:0] Conte	nt to be writ	ten into the	target byte	. Bits 31 to	o 8 are ignor	ed. This			
register mu	register must be written in the correct sequence or the operation will fail.									
Control register to unlock byte write. A value of 0x55555555 must be written to this address at										
the correct	point in the	e byte write	sequence or	the operation	n will fail.					
Bit31-8 Ign	ored.									

Flash Data Byte-Unlock Register									
UNLBWR		0x50020028			0xxxxxxxx				
W	W	W	W	W	W	W	W		
UBW7	UBW6	UBW5	UBW4	UBW3	UBW2	UBW1	UBW0		
UBW15	UBW14	UBW13	UBW12	UBW11	UBW10	UBW9	UBW8		
UBW23	UBW22	UBW21	UBW20	UBW19	UBW18	UBW17	UBW16		
UBW31	UBW30	UBW29	UBW28	UBW27	UBW26	UBW25	UBW24		
MSB							LSB		
Bit31-0 UBW	31:0] Contro	l register to	o unlock byte	e write. A v	alue of 0x55	555555 must	be written		
to this address at the correct point in the byte write sequence or the operation will fail.									
This registe	er must be wri	itten with a	32 bit acces	ss.					

Flash Byte-write Start Register											
BWRSTRT		0x5002002C			0xxxxxxxx						
W	W	W	W	W	W	W	W				
BRST7	BRST6	BRST5	BRST4	BRST3	BRST2	BRST1	BRST0				
BRST15	BRST14	BRST13	BRST12	BRST11	BRST10	BRST9	BRST8				
BRST23	BRST22	BRST21	BRST20	BRST19	BRST18	BRST17	BRST16				
BRST31	BRST30	BRST29	BRST28	BRST27	BRST26	BRST25	BRST24				
MSB							LSB				
Bit31-0 BRS	T[31:0] Contr	ol register [.]	to start a b	yte write.	A value of 0	xAAAAAAAA mus	st be				
written to this address at the correct point in the byte write sequence or the operation will											
fail.	fail.										
This regist	er must be wr	itten with a	32 bit acce	ss.							

Flash Sector Erase Unlock Register											
UNLSER		0x500200	30		0xxxxxxx	XX					
W	W	W	W	W	W	W	W				
USE7	USE6	USE5	USE4	USE3	USE2	USE1	USE0				
USE15	USE14	USE13	USE12	USE11	USE10	USE9	USE8				
USE23	USE22	USE21	USE20	USE19	USE18	USE17	USE16				
USE31	USE30	USE29	USE28	USE27	USE26	USE25	USE24				
MSB							LSB				
Bit31-0 0	JSE[31:0] Cont	trol register	to unlock a	sector eras	e. A value	of 0x6666666	6 must be				
written to this address at the correct point in the sector erase sequence or the operation will											
fail.	fail.										
This reg	ister must be	written with	a 32 bit ac	cess.							

Flash Sector Erase Start Register											
SERSTRT		0x50020034			0xxxxxxxx						
W	W	W	W	W	W	W	W				
SES7	SES6	SES5	SES4	SES3	SES2	SES1	SES0				
SES15	SES14	SES13	SES12	SES11	SES10	SES9	SES8				
SES23	SES22	SES21	SES20	SES19	SES18	SES17	SES16				
SES31	SES30	SES29	SES28	SES27	SES26	SES25	SES24				
MSB							LSB				
Bit31-0 SES	[31:0] Contro	ol register t	o commit a s	ector erase.	A value of	0x99999999 n	nust be				
written to	written to this address at the correct point in the sector erase sequence or the operation will										
fail.	fail.										
This regist	er must be wi	ritten with a	32 bit acce	ss.							

r						
Flash Block	Erase Unlock	Register				
UNLBLKER		0x50020038			0xxxxxxxx	
W	W	W	W	W	W	W

UNLBLKER		0x50020038			0xxxxxxxx					
W	W	W	W	W	W	W	W			
UBKE7	UBKE6	UBKE5	UBKE4	UBKE3	UBKE2	UBKE1	UBKE0			
UBKE15	UBKE14	UBKE13	UBKE12	UBKE11	UBKE10	UBKE9	UBKE8			
UBKE23	UBKE22	UBKE21	UBKE20	UBKE19	UBKE18	UBKE17	UBKE16			
UBKE31	UBKE30	UBKE29	UBKE28	UBKE27	UBKE26	UBKE25	UBKE24			
MSB							LSB			
Bit31-0 UBK	E[31:0] Contr	ol register	to unlock a	block erase.	A value of	0x77777777 m	ust be			
written to	written to this address at the correct point in the sector erase sequence or the operation will									
fail.										
This regist	er must be wr	itten with a	32 bit acce	ss.						

Flash Block Erase Start Register										
BKERSTRT		0x5002003C			0xxxxxxxx					
W	W	W	W	W	W	W	W			
BES7	BES6	BES5	BES4	BES3	BES2	BES1	BESO			
BES15	BES14	BES13	BES12	BES11	BES10	BES9	BES8			
BES23	BES22	BES21	BES20	BES19	BES18	BES17	BES16			
BES31	BES30	BES29	BES28	BES27	BES26	BES25	BES24			
MSB							LSB			
Bit31-0 BES	[31:0] Contro	l register t	o commit a b	lock erase.	A value of (x88888888 mu	ist be			
written to this address at the correct point in the sector erase sequence or the operation will										
fail.										

This register must be written with a 32 bit access.

Flash Control Register FLSCTRL 0x50020040 0x0000009 R/W R/W R/W R R/W R/W R/W R SECER PRGFLG WECD2 WECD1 WECD0 RWC2 RWC1 RWC0 Reserved Reserved Reserved Reserved Reserved Reserved Reserved R BLKER Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved _ _ _ _ _ _ _ _ Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved _ _ _ _ _ _ _ _ MSB LSB Bit31-9 Reserved Bit8 BLKER: Block erase activity flag. 0 = Flash block erase not in progress / 1 = Flash block erase in progress SECER: Sector erase activity flag. Bit7 0 = Flash sector erase not in progress / 1 = Flash sector erase in progress PRGFLG: Program activity flag. Bit6 / 1 = Flash byte write in progress 0 = Flash byte write not in progress Bit5-3 WECD[2:0] Write/erase clock frequency divider setting. This register should be programmed with the same value as RWC. Attempting to write or erase the Flash memory with this value set too low for the MCU clock frequency may result in unpredictable behavior. Bit2-0 RWC[2:0] Number of wait states used in the reading process. Each read from flash memory will take number of cycles equal to 1+RWC to complete. The number should be programmed according to the MCU clock frequency: 000 = 0 to 16 MHz001 = 16MHz to 32MHz 010 = 32MHz to 50MHz Before changing to a clock frequency faster than the flash can support, this register should be updated to an appropriate value or risk flash accesses producing incorrect data.

Flash Code Protection Register											
FLSCP		0x50020044			0x0000000						
W	W	W	W	W	W	W	W				
FCP7	FCP6	FCP5	FCP4	FCP3	FCP2	FCP1	FCP0				
FCP15	FCP14	FCP13	FCP12	FCP11	FCP10	FCP9	FCP8				
FCP23	FCP22	FCP21	FCP20	FCP19	FCP18	FCP17	FCP16				
FCP31	FCP30	FCP29	FCP28	FCP27	FCP26	FCP25	FCP24				
MSB	MSB LSB										
Bit31-0 FCP[31:0] Code Protection / SerialWire Lockout Control											
Code protec	tion control	register W	Irite a value	of 0xF2E110	47 to disable	the SerialW	ire				

Code protection control register. Write a value of 0xF2E11047 to disable the SerialWire interface. Write 0x00000000 to enable it. This allows the user program to disable the SerialWire interface to prevent unauthorized debug access to the part.

This register must be written with a 32 bit access.

NOTE1: This register does not lock the Flash Memory against read/write/erase by the applications program. It instead disables all communications with the debug interface, therefore preventing any external attack. The application code is still able to modify the Flash content. NOTE2: Upon Power-On Reset or Normal Reset, CM0160K8 disables the communication for a small time interval (8192 clock cycles). If the application needs to be protected it is mandatory to set this register with the appropriate code in the beginning of the initialization process and before the internal hardware enables the debug communication.

3.1.3.3 Flash Memory Operations & Examples

The following operations can be performed in the Flash Memory:

- Block Erase
- Sector Erase
- Byte Erase
- Code Protect

3.1.3.3.1 Block Erase

To erase a 2kB block the following sequence must be followed:

- 1. Write an address inside the block to be erased to the FLADDR register.
- 2. Unlock the block for erasure by writing the 0x77777777 pattern to the UNLBLKER register.
- 3. Start the block erase process by writing the 0x88888888 pattern into the BKERSTRT register.

Code Example:

```
*FLADDR = 0x000050A0; //Point to the block starting at 0x00005000
//(any address 0x5000 to 0x57FF will work)
*UNLBLKER = 0x77777777; //Unlock block erase
*BKERSTRT = 0x888888888; //Start erase process
```


NOTE: If this code is executed from flash memory, the execution will stall even without the while loop due to the next opcode fetch being delayed until the erase is complete. This example is intended to illustrate the behavior of the FLSCTRL flags if the code is being executed from SRAM.

NOTE: The erase process of a block or sector can take up to 10msec.

3.1.3.3.2 Sector Erase

To erase a 256 byte sector the following sequence must be followed:

- 1. Write an address inside the sector to be erased to the FLADDR register.
- 2. Unlock the sector for erasure by writing the 0x666666666 pattern to the UNLSER register.
- 3. Start the sector erase process by writing the 0x99999999 pattern to the SERSTRT register.

Code Example:

```
*FLADDR = 0x000050A0; //Point to the block starting at 0x00005000
//(any address 0x5000 to 0x50FF will work)
*UNLSER = 0x666666666; //Unlock sector erase
*SERSTRT = 0x99999999; //Start erase process
while ( *FLSCTRL & 0x80 ); //Check the Sector Erase Flag, wait until done
```

NOTE: The erase process of a block or sector can take up to 10msec.

3.1.3.3.3 Write Byte

To write a byte the following sequence must be followed:

- 1. Write the flash address to be programmed to the FLADDR register.
- 2. Unlock the byte write by writing the 0x55555555 pattern to the UNLBWR register.
- 3. Start the writing process by writing the 0xAAAAAAA pattern into the BWRSTRT register.
- 4. Write the value to be written into the FLWRDT register. (Bits 31 to 8 are ignored)

Code Example:

```
*FLADDR = 0x000050BB; //Point to the byte address
*UNLBWR = 0x5555555; //Unlock byte write
*BWRSTRT = 0xAAAAAAA; //Start write process
*FLWRDT = 0x000000AB; //Load 0xAB to be written
while ( *FLSCTRL & 0x40 ); //Check the Byte Write Flag, wait until done
```

NOTE: The byte write process can take up to 20µs.

3.1.3.3.4 Code Protect

CM0160K8 implements a protection scheme to prevent reverse engineering and tampering. It works as follows:

- 1. After any reset (Power-On or otherwise) the internal HW prevents any communication between the CPU and the debug interface during the first 8192 clock cycles.
- 2. The debug interface can also be disabled by loading the FLSCP register with the pattern 0xF2E11047. This lock can be released by loading FLSCP with the pattern 0x00000000.

By disabling the debug interface using the FLSCP lock during the first 8192 clock cycles, the program code can ensure that the debug interface is never active unless it specifically activates it by releasing the FLSCP lock.

Code Example:

*FLSCP = 0xF2E11047; //Code protection activated

NOTE: If code protection is necessary it is important to consider the time it takes from the moment the part is reset until the execution reaches the main function. In some exceptional cases where the initialization of the system (stack, heap, global variables) take more than 8K clock cycles it may be necessary to add code directly in the initialization routine.

3.1.4 Data Memory

The device contains a single logically contiguous block of 8 Kbyte of data SRAM in the address range 0x2000000 - 0x20001FFF

3.1.5 Clock Sources

The ASIC supports four clock sources as follows:

- 1. Internal low-frequency (10 kHz) RC oscillator, divided by 2 internally to make 5 kHz for use (this clock source is always enabled)
- 2. Crystal oscillator for driving external 32.768 kHz crystal
- 3. Internal high-frequency RC oscillator
- 4. Internal high-frequency PLL oscillator using undivided 32.768 kHz crystal clock as reference

Upon Reset or Power-On Reset, the system starts using the always-enabled internal 10 kHz lowfrequency RC oscillator as the clock source. Depending upon application requirements, the user can:

- Enable or disable the external 32.768 kHz crystal
- Enable or disable the high-frequency PLL using crystal as reference
- Enable or disable the high-frequency RC oscillator
- Select the system clock source
- Enable the clock monitor interrupt to detect and process eventual failures
- Configure the hardware to automatically switch to high-frequency RC oscillator when waking up from sleep to reduce the wake-up time

The 10 KHz RC oscillator is always enabled by hardware. It is used for internal power management sequencing by the hardware.

The crystal oscillator is disabled upon exiting Power-On Reset to optimize pre-sale shelf life of the packaged meter including the battery before start of end user interaction. For several application scenarios, it is envisaged that after exiting the Power-On Reset event, the firmware will enable the 32.768 kHz crystal oscillator and leave it enabled during subsequent sleep events for proper RTC operation.

Hardware provides a high-frequency RC oscillator with fast start-up time of less than 20 µs normally used as the default system clock source for the MCU. This oscillator's frequency is programmable between 12 MHz and 18 MHz.

There is also a high-frequency PLL oscillator using the 32.768 kHz crystal oscillator clock as a reference, with start-up time of 10 ms. This oscillator is required for USB 1.1 operation, and may be advantageous for any operation requiring higher frequency accuracy than achievable by the high-frequency RC oscillator. Such operations may include high baud rate UART or high sampling rate sigma delta ADC operation.

An integer division pre-scaler is available to scale the frequency used by the MCU if either the high-frequency RC oscillator or high-frequency PLL oscillator are selected as the clock source.

Figure 3 describes the clock management system

Figure 3: Clock Management System

3.1.5.1 Low-Frequency RC Oscillator Registers

Low frequency (10 kHz) RC oscillator frequency trim register										
RCLFTRIM			0x500180E4			0x10				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reserved	Reserved	Reserved	RCLFTRIM4	RCLFTRIM3	RCLFTRIM2	RCLFTRIM1	RCLFTRIM0			
MSB			LSB							
Bit7-5 Re	served									
Bit4-0 RC	LFTRIM[4:0]:	Trim low fre	equency RC os	cillator fre	quency					
0x00 = Maximum RC oscillator output frequency										
0x	1F = Minimum 1	RC oscillato	or output fre	quency						

3.1.5.2 32.768 kHz Crystal Oscillator Registers

32.768 kHz crystal oscillator bias trim register											
X32KTRIM			0x500180E0			0x03					
R/W	R/W R/W R/W R/W R/					R/W	R/W				
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	X32KTRIM1	X32KTRIM0				
MSB		LSB									
Bit7-2 R	eserved										
Bit1-0 X	32KTRIM[1:0]: T	rim crystal	oscillator k	pias current	(and transo	conductance)					
0	0x00 = Maximum bias current (maximum transconductance gain)										
0	x03 = Minimum b	ias current	(minimum tra	ansconductan	ce gain)						

3.1.5.3 High-Frequency RC Oscillator Registers

The post factory calibration accuracy is 5% over extended temperature and supply conditions for this oscillator. The high-frequency RC oscillator is factory calibrated with the resulting oscillator trim constant stored in a special sector of Flash memory that begins at the address FLASH_ADK_SECTOR and is mapped as defined in the clough core.h header file.

The application software must transfer this value to register RC18MTRIM upon exiting Power-On Reset state. This value, once transferred, will be preserved during sleep events.

High frequency RC oscillator frequency trim register											
RC18TRIM			0x500180E5			0x80					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
RC18TRIM7	RC18TRIM6	RC18TRIM5	RC18TRIM4	RC18TRIM3	RC18TRIM2	RC18TRIM1	RC18TRIM0				
MSB							LSB				
Bit7-0 RC1 0x0 0xE	8 TRIM[7:0]: T 00 = Maximum B FF = Minimum B	rim RC oscil C oscillator C oscillator	lator freque frequency frequency	ency							

3.1.5.4 PLL Oscillator Registers

Firmware can program the integer value of the feedback divider of this PLL to achieve any clock frequency of M*32.768 kHz, where M must be in the range of 1280 to 1536, inclusive. The 32.768 kHz crystal oscillator must be enabled and this divide ratio must be set by firmware before the PLL is enabled.

PLL feedback integer divider ratio register										
PLLFBDIV			0x500180D6		0x05B9					
R/W	R/W	R/W	R/W	R/W	R/W					
Reserved	Reserved	Reserved	Reserved	Reserved	PLLMTRM10	PLLMTRM9	PLLMTRM8			
PLLMTRM7	M7 PLLMTRM6 PLLMTRM5 PLLMTRM4 PLLMTRM3 PLLMTRM2 PLLMTRM1 PLLMTRM0									
MSB							LSB			
Bit15-11 Res Bit10-0 PLL Prog Exar USB Sigr	served wTRM[10:0]: PLL output frequenc grammed value mu mple values: full speed oper ma delta ADC ope (115 2 kbmp) o	Feedback Di y = PLLMTRM st be in th ation: P ration: P	vider Ratio * 32768 Hz e range 1280 LLMTRM = d14 LLMTRM = d15) to 1536, i 165 536	nclusive					

3.1.5.5 Top Level Clock Management Registers

The following registers controls the behavior of the clock sources

Clock C	Control Registe	r					
PMUCLK			0x50000000			0x45	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
CKD2	CKD1	CKD0	en_PLL	en_XO	en_RCosc	CKSEL1	CKSEL0
MSB							LSB
Bit7-5	CKD[2:0]: Clo	ck Frequen	cy divider.				
	000 = Clock d	ivided by 3	L				
	001 = Clock d	ivided by 2	2				
	010 = Clock d	ivided by 3	3				
	011 = Clock d	ivided by	1				
	100 = Clock d	ivided by (5				
	101 = Clock d	ivided by 8	3				
	110 = Clock d	ivided by 2	12				
	111 = Clock d	ivided by 2	24				
Bit4	en_PLL: PLL c	ontrol					
	0 = PLL disab	led					
	1 = PLL enabl	ed					
Bit3	en_XO: Crysta	l Oscillato	or Control				
	0 = Crystal O	scillator (disabled				
	1 = Crystal O	scillator e	enabled				
Bit2	en_RCosc: Mai	n RC Oscili	lator Control				
	0 = Main RC O	scillator (disabled				
	1 = Main RC O	scillator e	enabled				
Bit1-0	CKSEL[1:0]: C	lock Select	5				
	00 = 10 KHz A	uxiliary C	lock Source (divided by 2	to make 5 KHz	for actual us	e)
	01 = 12 MHz M	ain RC Osc:	illator Clock	Source			
	10 = PLL Cloc	k Source d	lvided by 4				
	11 = Clock f	ault indica	tor -> Auxil	iary Clock a	ctive (5 KHz in	actual use)	

Function-	Function-specific Clock Control											
CLKCTR			0x5000003		0x08							
Reserved	Reserved	Reserved	Reserved R/W R/W R/W R/W R/W									
-	-	-	adc_sclk_ctr	acp_clk_ctr1	acp_clk_ctr0	lcd_clk_ctr1	lcd_clk_ctr0					
MSB							LSB					
Bit7-5 H	·5 Reserved											
Bit4 a	adc_sclk_ctr: ADC sampling clock frequency divider											
(0 = Divide by 24, nominal ADC sampling clock frequency =~ 500 kHz (default)											
1	= Divide 1	by 12, nomi	nal ADC sampli	ng clock frequ	ency =~ 1 MHz							
Bit3-2 a	.cp_clk_ctr	[1:0]: Anal	og charge pump	input clock								
(00 = 250 KH:	Z										
(1 = 500 KH:	Z										
1	0 = 1 MHz	(default)										
1	1 = 2 MHz											
Bit1-0	.cd_clk_ctr	[1:0]: LCD	charge pump cl	ock select								
0	00 = 16.384	kHz, deriv	red as 32.768 k	Hz XTAL clock	divided by 2 (default)						
0	1 = 250 KH:	Z										
1	0 = 500 KH	Z										
1	1 = 1 MHz											

3.1.6 Timer0,1,2

The MCU implements three identical timers: Timer0, Timer1, and Timer2. These use the system clock as a clock source and, once activated, count up continuously. They start from the value initially loaded into the counting register (32-bit) and, if enabled, generate an interrupt upon rolling over (0xFFFFFFFF $\rightarrow 0x00000000$).

3.1.6.1 Timer0,1,2 Registers

There is an initial value register and a control register associated with each of the three timers.

32-bit Time	32-bit Timer0 initial value register											
TMROREG			0x50020000			0x00000000						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
т7	Тб	Т5	Τ4	Т3	Τ2	Τ1	тО					
T15	T14	T13	T12	T11	T10	Т9	Т8					
Т23	Т22	Т21	T20	T19	T18	T17	T16					
Т31	т30	Т29	T28	т27	T26	Т25	Т24					
MSB							LSB					
Bit31-0 T	[31:0]: Tim	er Register	initial valu	le register								

Timer0 Control register											
TMR0CTRL		0x50020004			0x00						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	TSTART				
MSB							LSB				
Bit0 TSTA	RT: Timer en	able bit.									
0 = Timer n	0 = Timer not running										
1 = Timer r	unning										

32-bit Time	32-bit Timer1 initial value register											
TMR1REG			0x50020008		0x0000000							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
т7	Тб	Т5	Τ4	Т3	Т2	Τ1	тО					
T15	T14	T13	T12	T11	T10	Т9	Т8					
Т23	Т22	T21	T20	T19	T18	T17	T16					
Т31	т30	T29	T28	Т27	T26	Т25	Τ24					
MSB							LSB					
Bit31-0 T	[31:0]: Time	er Register	initial valu	le register								

Timer1 Control register											
TMR1CTRL			0x5002000C			0x00					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	TSTART				
MSB							LSB				
Bit0 TSTA	Bit0 TSTART: Timer enable bit.										
0 = Timer not running											
1 =	Timer runnin	g									

32-bit Timer2 initial value register								
TMR2REG	-		0x50020010			0x0000000		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
т7	тб	Т5	Τ4	Т3	Т2	Τ1	ΤO	
T15	T14	T13	T12	T11	T10	Т9	Т8	
Т23	Т22	T21	Т20	T19	T18	T17	T16	
Т31	т30	Т29	T28	т27	T26	Т25	Т24	
MSB							LSB	
Bit31-0 T[31:0]: Timer Register initial value register								

Timer2 Control register								
TMR2CTRL		0x50020014				0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	TSTART	
MSB							LSB	
Bit0 TSTART: Timer enable bit.								
0 = Timer not running								
1 = Timer running								

3.1.6.2 Timer0,1,2 Operation

Operation of each timer involves loading the initial counter register, enabling the timer, and either polling the current value of the counter register or enabling the interrupt processing it within the interrupt service routine. Note that the timer counting register must be reloaded by application code within the interrupt service service routine.

3.1.7 Timer3

A special purpose timer with the following features is implemented on the ASIC:

- 16-bit resolution
- Loads an initial value and counts up at each rising edge of input clock
- Can generate interrupt on the cycle when the timer overflows to zero
- Provides ability to read current value at any time
- Separate register that stores the initial load value
 - Auto-reload of this value when overflow occurs (if this feature is enabled)
 - Over-writing current value register when timer is counting could result in errant condition
- Multiple input clock sources (see below) asynchronous with MCU clock
 - The accuracy of timers used for sensor measurement timing shall be within 0.1% by selecting appropriate clock source
 - Timing intervals of 0.1 s, 0.125 s, 0.25 s are supported
- Programmable pre-scaler (see below)

3.1.7.1 Timer3 Registers

16-bit Timer3 current value register							
TMR3REG		0x5000070			0x0000		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Т7	Тб	Τ5	Τ4	Т3	Т2	Τ1	тО
T15	T14	T13	T12	T11	T10	Т9	Т8
MSB							LSB
Bit31-0 T[15:0]: Timer current value register							

Bit31-0 T[15:0]: Timer current value register

16-bit Timer3 load value register								
TMR 3LOAD		0x5000072			0x0000			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
т7	Т6	Т5	Т4	Т3	Т2	Τ1	ТО	
T15	T14	T13	T12	T11	T10	Т9	Т8	
MSB							LSB	
Bit31-0 T[15:0]: Timer load value register (loaded automatically when overflow occurs if								
TM3CTRL[*AUTOLD] = 1)								

Timer3 Contro	ol registe	r						
TMR3CTRL		C	x50000074		0x00			
R/W	R/W	R/W	R/W R/W R/W R/W					
Reserved	IRQEN	PRESCALE1	PRESCALE0	CLKSRC1	CLKSRC0	AUTOLD	TMR3EN	
MSB							LSB	
Bit0 TMR3E	N: Timer e	nable bit.						
0 = Timer	not runn	ing (freezes cu	urrent value re	gister; coun	ter starts f	rom this va	lue next	
time TMR3	BEN = 1)							
1 = Timer	running							
Bit1 AUTOLI	D: Auto-lo	ad enable bit.						
0 = Disab	le auto-re	load of the va	lue in load reg	gister into o	current value	register w	hen timer	
overflows	s to O							
1 = Enable	e auto rel	oad of the val	ue in load regi	ster into cu	irrent value	register wh	en timer	
overflows	s to O							
Bit3-2 CLK	SRC1:CLKSR	.CO Clock sourc	e selection bit	s				
00 = 5 KH:	z AUX cloc	k (10 kHz RC c	lock divided by	(2)				
01 = 16.3	84 kHz clo	ck (32.768 KHz	XTAL clock div	vided by 2)				
10 = RC c	lock (nomi	nal 12 MHz)						
11 = PLL (output clo	ck (48 MHz)						
Bit5-4 PRES	SCALE1:PRE	SCALE0: Pre-sc	aler setting:					
00 = Divid	de input c	lock by 1						
01 = Divid	de input c	lock by 4						
10 = Divid	de input c	lock by 16						
11 = Divid	11 = Divide input clock by 256							
Bit6 IRQEN	Bit6 IRQEN Interrupt enable bit							
0 = Disab	0 = Disable interrupt generation when overflow occurs (prevents MCU from waking up upon							
overflow)	overflow)							
1 = Enable interrupt generation when overflow occurs (wakes up MCU upon overflow even if MCU								
is in deep sleep)								
Bit7 Reserve	ed							

3.1.7.2 Timer3 Usage

Proposed software instruction order:

- Program TMR3CTRL with appropriate settings keeping TMR3EN = 0 (till input clock is available)
- Program TMR3LOAD register
- Enable interrupt in NVIC (if desired)
- Program TMR3CTRL with TMR3EN = 1 to start counting

Calculation of interval time

- Consider load value to be a negative number that is truncated to 16-bits when programming
- Interval time in seconds = (Pre-scaler Divider / Clock Frequency in Hz) *
 {abs(Load Value) + 1}

Examples

- 1. Time 0.125 s intervals using 16.384 KHz XTAL-derived clock.
 - Set Pre-scaler to divide by 1, Load Value = -2047 (0xF801)
- 2. Time 0.1 s intervals using 16.384 KHz XTAL-derived clock.
 - Set Pre-scaler to divide by 1, Load Value = $-1637.4 \rightarrow -1637$ (0xF99B)
 - Fixed error in interval timing when using this setting: 24.4 us (244 ppm error << 1000 ppm spec)
- **3.** Time 0.25 s intervals using 48 MHz clock.
 - Set Pre-scaler to divide by 256, Load Value = -46874 (0x48E6)
- 4. Determine maximum interval time possible using each clock source
 - Set Pre-scaler to divide by 256, Load value = -65535 (0x0001)
 - 5 KHz RC clock:
- ~3355.4 seconds (~56 minutes)
- 16.384 KHz XTAL-derived clock:
- 1024 seconds (~17 minutes) 1.398 seconds
- 12 MHz RC clock:
 48 MHz PLL clock:
- 0.3495 second

Proprietary and Confidential information

3.1.8 Wake-Up Timer

In addition to Timer 0/1/2, the processor includes a timer capable of waking-up the microcontroller from a deep sleep (halt) state.

The wake-up timer is a timer used to allow for recovery from deep sleep (halt), including when the microcontroller is disconnected from its power supply.

The following register controls the wake-up timer:

Wakeup Timer Control							
WKPTIME		0x5000004			0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MANT 3	MANT2	MANT1	MANT 0	EXP3	EXP2	EXP1	EXP0
MSB							LSB
Bit7-4 MANT[3:0]: Mantissa of the wakeup timer Bit7-4 EXP[3:0]: Exponent of the wakeup timer (range: 012) Wakeup Period = $16 \times \frac{Mantissa \times 2^{Exponent}}{RCLFCLK}$							
Max	ımum wake-up	period is 16	*15*2^12/10e	3 =~ 98.3 s	econds		

3.1.9 Watch Dog Timer

The device implements a Watch Dog Timer (WDT) that can operate in one of two basic ways. In Interrupt Mode, an interrupt will be generated in the event of a WDT rollover. In Reset Mode, the microcontroller will reset in the event of a WDT rollover.

Watch Dog Timer control register (32-bit)									
WDTCTRL	I	0x50020018				0x0000000			
Reserv	ved Reserved	Reserved	R/W	R/W	R/W	R/W	R/W		
-	-	-	WDTPRES1	WDTPRES0	RSTFLAG	RESETEN	WDTEN		
-	-	-	-	-	-	-	-		
-	-	_	-	-	-	-	-		
-	-	-	-	-	-	-	-		
MSB							LSB		
Bit4-3	Bit4-3 WDTPRES1:WDTPRES0: WDT Prescaler:								
	00 : t _{timeout} =2 ¹³ /fs	ystemClock							
	01 : t _{timeout} =2 ¹⁹ /fs	ystemClock							
	10 : t _{timeout} =2 ²² /fs	ystemClock							
	11 : t _{timeout} =2 ³² /f _s	ystemClock							
Bit2	RSTFLAG: Reset F	lag. This fla	ng is set by t	the system at	the initiali	zation if th	le		
	initialization w	was caused by	a reset trigg	gered by the W	DT. The bit	can be de-a	sserted		
	by the application.								
Bit1	RESETEN: Reset enable. If enabled, a WDT time-out will force the microcontroller to								
	reset. This bit can be asserted, but it cannot be de-asserted.								
Bit0	WDTEN: WDT enable	e. This bit c	an be asserte	d, but it can	not be de-as	serted. Onc	e the		
	WDT is enabled,	it cannot be	turned off un	ntil a Reset o	r Power-On R	leset occurs.			

WDT Clear register (32-bit)							
WDTCLR		0x5002001C			0x0000000		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
WCLR7	WCLR6	WCLR5	WCLR4	WCLR3	WCLR2	WCLR1	WCLR0
WCLR15	WCLR14	WCLR13	WCLR12	WCLR11	WCLR10	WCLR9	WCLR8
WCLR23	WCLR22	WCLR21	WCLR20	WCLR19	WCLR18	WCLR17	WCLR16
WCLR31	WCLR30	WCLR29	WCLR28	WCLR27	WCLR26	WCLR25	WCLR24
MSB							LSB
<pre>Bit31-0 WCLR[31:0]:Clear Register. To clear the WDT counting, the following words must be written in this order and without any instruction between them: 0x3C570001 0x007F4AD6 Warning: Programming WDTCLR with other values or in the wrong order will cause the watchdog to</pre>							
generate an interrupt or reset the system.							

3.1.10 Nested Vector Interrupt Controller

Interrupt vectors are implemented as defined in the following table:

Table 3.7 Interrupt Vectors								
Cortex M0 Specific Exceptions								
Name	#	Description	Required Interrupt Handler (Function)					
HardFault_IRQn	-13	HardFault handler	HardFault_Handler (void)					
SVCall_IRQn	-5	Supervisory call						
PendSV_IRQn	-2	Interrupt-driven request for system level service*						
SysTick_IRQn	-1	SysTick Timer interrupt	<pre>void SysTick_Handler(void)</pre>					
		ASIC Specific Exceptions						
Name	#	Comments	Required Interrupt Handler (Function)					
BrownOut_IRQn	0	Brownout detection interrupt	void BrownOut_Handler (void)					
ClkMon_IRQn	1	Clock monitor interrupt	void ClkMon_Handler (void)					
PIN_IRQn	2	Pin change interrupt	void PIN_Handler (void)					
RTC_Alarm_IRQn	3	RTC alarm interrupt	void RTC_Alarm_Handler (void)					
RTC_Overflow_IRQn	4	RTC overflow interrupt	<pre>void RTC_Overflow_Handler (void)</pre>					
I2C_Collision_IRQn	5	I2C Collision detection interrupt	<pre>void I2C_Collision_Handler (void)</pre>					
I2C_IRQn	6	I2C event interrupt	void I2C_Handler (void)					
UART_IRQn	7	UART event interrupt	void UART_Handler (void)					
SPI_IRQn	8	SPI event interrupt	void SPI_Handler (void)					
PLL_IRQn	9	PLL event interrupt	void PLL_Handler (void)					
USB_Detect_IRQn	10	USB detection interrupt	void USB Detect Handler (void)					
USB_Wakeup_IRQn	11	USB resume interrupt	void USB_Wakeup_Handler (void)					
USB_Interrupt_IRQn	12	USB communications interrupt	<pre>void USB_Interrupt_Handler (void)</pre>					
SDADC_IRQn	13	Sigma delta ADC conversion complete interrupt	void SDADC_Handler (void)					
TIMER3 Interrupt	14	Special purpose interval timer interrupt	void Timer3 Handler (void)					
IRQ15_IRQn	15	Reserved	<pre>void Default_IRQ_Handler(void)</pre>					
TIMER0_IRQn	16	Timer0 interrupt	void Timer0_Handler (void)					
TIMER1_IRQn	17	Timer1 interrupt	void Timer1_Handler (void)					
TIMER2_IRQn	18	Timer2 interrupt	void Timer2_Handler (void)					
WATCHDOG_IRQn	19	Watchdog timer interrupt	void Watchdog_Handler (void)					

3.1.11 Crystal Oscillator and Real-time Clock

The digital engine supports a 32.768 KHz crystal oscillator for basic test timing and to support a Real Time Clock (RTC) counter for time and date maintenance. The crystal connections are to be compensated with shunt capacitors whose value must be chosen based on the selected crystal, taking into account PCB parasitic capacitance. The value of each shunt capacitor is expected to be in the 10-20 pF range. With factory calibration, the RTC is capable of maintaining ± 2 min/month accuracy when operated within a 0°C to 50°C temperature range and within the specified operating supply voltage range.

The calendar function based on the 1 Hz tick provided by the RTC is maintained in firmware.

3.1.11.1 Crystal Oscillator Pins

Following pins describe the 32.768 KHz crystal oscillator external pins

Table 3.8 Oscillator Pins					
Pin Name	Description				
OSCOUT	32.768 KHz Oscillator Output – Driven connection to external 32.768 KHz crystal. To be compensated using a 18 pF shunt capacitor to ground (exact value dependent on precise crystal used and PCB layout)				
OSCIN	32.768 KHz Oscillator Input – Input connection from external 32.768 KHz crystal. To be compensated using a 18 pF shunt capacitor to ground ((exact value dependent on precise crystal used and PCB layout)				

3.1.11.2 Real Time Counter Operation

The Real-Time Counter is an independent counter running from a 16.384 kHz clock (32.768 kHz XTAL clock divided by 2). The RTC provides two interrupts: alarm and overflow. Either can wake-up the system from sleep mode.

When the counter is enabled, the current RTC register can always be read without any timing error.

However, writing to RTC registers is normally prevented by a locking mechanism. To enter configuration mode for the RTC, a special lock bit must be cleared to configure the RTC registers. To prevent cycle skip errors, firmware must complete all configuration operations for the RTC in less than $\frac{1}{2}$ clock cycle of the 16.384 kHz clock (about < 30 µs). This is typically possible since the MCU clock can be chosen to be the high frequency RC oscillator clock during reconfiguration.

Please contact Indie Semiconductor for an example firmware driver implementing a firmware calendar function using this RTC.

Figure 4: RTC alarm timing example

Counter starts at ' d0, alarm register set to ' d4

Figure 5: RTC overflow timing example

3.1.11.3 Real Time Counter Register Map

RTC control register								
RTC_CTI	RTC_CTRL 0x5000060 0x0D							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reser	ved alrf0	alrfl	owf	alrie	owie	rtc_en	lock	
MSB	5						LSB	
Bit7	Reserved							
Bit6	alrf0: alarm 0 i	flag						
	0 = alarm not defined as the second	etected						
	1 = alarm detect	ted						
Bit5	alrf1: alarm 1 i	flag						
	0 = alarm not defined as the second	etected						
	1 = alarm detect	ted						
Bit4	owf: overflow fl	lag						
	0 = E overflow of	occurs						
	1 = E overflow r	not occurs						
Bit3	alrie: alarm int	terrupt enabl	e					
	0 = alarm interrupt is masked							
	1 = alarm interrupt is enable							
Bit2	owie: overflow interrupt enable							
	0 = overflow int	terrupt is ma	sked					
	1 = overflow int	terrupt is en	able					
Bit1	lock: lock							
	0 = configuration register is allowed to be written							
	1 = configuration register is not allowed to be written							
Bit0	<pre>rtc_en: rtc enab</pre>	ple						
	0 = rtc logic is	s not enable						
	1 = rtc logic is	s enable						

RTC programmable current counter								
RTC_COUNT		0x5000064				0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	cnt[17]	cnt[16]	
cnt[15]	cnt[14]	cnt[13]	cnt[12]	cnt[11]	cnt[10]	cnt[9]	cnt[8]	
cnt[7]	cnt[6]	cnt[5]	cnt[4]	cnt[3]	cnt[2]	cnt[1]	cnt[0]	
MSB							LSB	
Bit32-18	Bit32-18 Reserved							
Bit17-0	cnt[17-0]: R	TC counter c	urrent value					

RTC alarm 0 register								
RTC_ALARM0		0x5000068			0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	alr0[17]	alr0[16]	
alr0[15]	alr0[14]	alr0[13]	alr0[12]	alr0[11]	alr0[10]	alr0[9]	alr0[8]	
alr0[7]	alr0[6]	alr0[5]	alr0[4]	alr0[3]	alr0[2]	alr0[1]	alr0[0]	
MSB							LSB	
Bit32-18 Reserved								
Bit17-0	Bit17-0 alr0[17-0]: alarm 0 comparison value							

RTC alarm 1 register								
RTC_ALARM1			0x500006C		0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	alr1[17]	alr1[16]	
alr1[15]	alr1[14]	alr1[13]	alr1[12]	alr1[11]	alr1[10]	alr1[9]	alr1[8]	
alr1[7]	alr1[6]	alr1[5]	alr1[4]	alr1[3]	alr1[2]	alr1[1]	alr1[0]	
MSB							LSB	
Bit32-18 Reserved								
Bit17-0	alr1[17-0]:	alarm 1 compa	arison value					

3.1.12 LCD

The device includes an LCD interface whose main characteristics are:

- Support for quadplexed LCD drive; 1/4 duty (1/3 bias)
- Integrated LCD charge pump generating 4.5 V from battery voltage.
- Support for up to 120 display elements (4 commons by 30 segment lines).

The LCD interface requires up to 34 connections. For quadplexed drive there are four common signals (COM0, COM1, COM2 and COM3). Up to 30 segment signal connections (S0 through S29) can also be made, supporting a maximum of 120 display elements when operating with quadplexed drive.

An LCD charge pump generates a regulated 4.5 V supply for the LCD interface from the available battery or USB supply voltage. The charge pump and LCD ladder voltage network require the use of five external capacitors.

Table 3.9 LCD signals					
Pin Name	Description				
LCD_COM0 - LCD_COM3	LCD COM Driver Outputs (4) : Digital engine LCD COM driver outputs supporting quadplexed LCD drive.				
LCD_SEG0 - LCD_SEG29	LCD SEG Driver Outputs (30) : Digital engine LCD SEG driver outputs supporting quadplexed LCD drive.				
VLCD	LCD Charge Pump Output Voltage : Digital engine LCD charge pump external capacitor connection. Bypass with 4.7 μF capacitor.				
LCD_REF_H	LCD Bias 1 : Digital engine LCD bias network external capacitor connection. Bypass with 0.47 μF capacitor.				
LCD_REF_L	LCD Bias 2 : Digital engine LCD bias network external capacitor connection. Bypass with 0.47 μF capacitor.				
LCD_CAP_N	LCD Charge Pump - : Digital engine LCD charge pump external 1 μF series charge pump capacitor connection.				
LCD_CAP_P	LCD Charge Pump + : Digital engine LCD charge pump external 1 μF series charge pump capacitor connection.				

3.1.12.1 LCD Drive Waveforms

The following describes the typical LCD drive waveform when operating with 1/4 duty cycle, 1/3 bias drive. This utilizes four common signals, COM0 through COM4, and a segment line for every four display elements. The ASIC supports up to 30 segment signals, S0 through S29, and can support an LCD with up to 120 display elements. The internal LCD charge pump regulator is designed to support 4.5 V display panels.

Each pixel of the LCD panel turns on when the potential difference between the corresponding common and segment signals becomes higher than a specific voltage (LCD drive voltage, V_{LCD}). The pixels turn off when the potential difference becomes lower than V_{LCD} .

Applying a DC voltage to the common and segment signals causes degradation of an LCD panel. To avoid this, the LCD panel is driven by AC voltage. When the display is disabled, no DC bias is applied between common and segment signals.

3.1.12.1.1 Common Signals

For quadplexed drive, each common signal is selected sequentially and allocated 1/4 of the cycle.

3.1.12.1.2 Segment Signals

The segment signals correspond to 30 bytes of the LCD display data memory (S0 through S29). Bits 0, 1, 2, and 3 of each byte are read in synchronization with COM0, COM1, COM2, and COM3, respectively. If a bit is 1, it is converted to the 'select' voltage, and if it is 0, it is converted to the deselect voltage. The conversion results are output to the segment pins (S0 through S29).

Determine the combination of front-surface electrodes (corresponding to the segment signal) and rearsurface electrodes (corresponding to the common signals) forms display patterns in the LCD data memory, and write the bit data that corresponds to the desired display pattern on a one-to-one basis.

LCD display data bits are not used and should be set to 0. They are reserved for potential future use supporting a blink function.

3.1.12.1.3 Output Waveforms for Common and Segment Signals

Table 3.10 lists the voltages output as common and segment signals for the 1/3 bias method.

Table 3.10 LCD 1/3 Bias Drive Voltage Levels							
	Segment Signal	Select Signal Level	Deselect Signal Level				
Common Signal		GND/VLCD	VLCD_REF_H/VLCD_REF_L				
Select signal level	VLCD/GND	-VLCD/+VLCD	-(1/3)VLCD/+(1/3)VLCD				
Deselect signal level	VLCD_REF_L/VLCD_REF_H	-(1/3)VLCD/+(1/3)VLCD	-(1/3)VLCD/+(1/3)VLCD				

3.1.12.1.4 Quadplexed display example

Figure 6 shows how segment signals (S0 through S29) and common signals (COM0 through COM3) might be connected to a displayed digit of a multi-digit LCD panel. For this example, assume multiple digits are displayed by the panel. The contents of the display memory correspond to this display.

Figure 6: Quadplexed LCD Electrode Connections

The following description assumes the numeral '6' is displayed by the digit formed using segments S_n and S_{n+1} . Segment and common signal connections are made to the digit as shown in Figure 6. It is necessary to apply the select or deselect voltage to the S_n and S_{n+1} pins according to Table 3.11 at the timing of the common signals COM0 to COM3 to form the digit '6'.

Table 3.11 LCD Select and Deselect Voltages (COM0 through COM3)						
Segment Common	Sn	S _{n+1}				
СОМО	Select	Select				
COM1	Deselect	Select				
COM2	Select	Select				
COM3	Select	Select				

Based upon Table 3.11, the display data memory locations (COM0 through COM3) corresponding to Sn and Sn+1 must contain '1', except COM2 position Sn must contain '0'.

_	T _F	
сомо		
СОМ1		^{····· V} LCD ^{····· V} LCD_REF_H VLCD_REF_L ···· GND
сом2		^{····· V} LCD ^{····· V} LCD_REF_H — ^V LCD_REF_L ····· GND
сомз		^{····· V} LCD ^{····· V} LCD_REF_H — ^V LCD_REF_L ···· GND
Sn		^{·····} ^V LCD ^{····· V} LCD_REF_H ····· ^V LCD_REF_L — GND

Figure 7: Quadplexed LCD Drive Waveform Example

Figure 7 shows the LCD drive waveforms between the Sn signal and each common signal. When the select voltage is applied to Sn at the timing of COM0, an alternate rectangle waveform, +VLCD/-VLCD, is generated to turn on the corresponding LCD segment. This alternate waveform also occurs at the timing of COM2 and COM3 to turn on the corresponding segments. It does not occur at the timing of COM1, so the alternate waveform is not generated and the corresponding segment remains off.

Figure 8: Quadplexed LCD Drive Waveform Example

3.1.12.2 LCD Drive Voltages

The ASIC generates an LCD drive power supply using internal voltage boosting and a voltage divider. When enabled, a regulator/charge pump generates a V_{LCD} voltage of 4.5 V using the available battery voltage or USB supply voltage. The divider then generates LCD_REF_H, and LCD_REF_L according to Table 3.12.

Table 3.12 LCD 1/3 Bias Drive Voltage Levels						
Bias Method	1/3 Bias Method					
LCD Drive Voltage Pin						
VLCD	VLCD					
LCD_REF_H	(2/3) VLCD					
LCD_REF_L	(1/3) VLCD					

The LCD charge pump requires an external non-polarized charge pump capacitor between pins LCD_CAP_P and LCD_CAP_N. External low-leakage decoupling capacitors are also required on LCD drive voltage pins VLCD, LCD_REF_H, and LCD_REF_L.

Figure 9: Connecting Pins for LCD Charge Pump and Divider

3.1.12.3 LCD Registers

The following registers control the behavior of the LCD pins:

Table 3.13 LCD Registers							
Address	Register Name	Description	Reset Value				
0x500180A0	COM0	COM0 Display Data Register	0xxxxx				
0x500180A4	COM1	COM1 Display Data Register	0xxxxx				
0x500180A8	COM2	COM2 Display Data Register	0xxxxx				
0x500180AC	COM3	COM3 Display Data Register	0xxxxx				
0x500180B0	LCDC1	LCD Control Register 1	0x31				
0x500180B1	LCDC2	LCD Control Register 2	0xAA				

COMO Display Data Register								
COM0			0x500180A0		0xxxxx			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
S7COM0	S6COM0	S5COM0	S4COM0	S3COM0	S2COM0	S1COM0	S0COM0	
S15COM0	S14COM0	S13COM0	S12COM0	S11COM0	S10COM0	S9COM0	S8COM0	
S23COM0	S22COM0	S21COM0	S20COM0	S19COM0	S18COM0	S17COM0	S16COM0	
Reserved	Reserved	S29COM0	S28COM0	S27COM0	S26COM0	S25COM0	S24COM0	
MSB							LSB	
Bit31-30 Res	Bit31-30 Reserved							
Bitn Sn/COMO LCD display element state (0 <= n <= 29).								
0 =	0 = Display element blank							
1 =	Display eleme	nt visible						

COM1 Display	COM1 Display Data Register										
COM1			0x500180A4			0xxxxx					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
S7COM1	S6COM1	S5COM1	S4COM1	S3COM1	S2COM1	S1COM1	SOCOM1				
S15COM1	S14COM1	S13COM1	S12COM1	S11COM1	S10COM1	S9COM1	S8COM1				
S23COM1	S22COM1	S21COM1	S20COM1	S19COM1	S18COM1	S17COM1	S16COM1				
Reserved	Reserved	S29COM1	S28COM1	S27COM1	S26COM1	S25COM1	S24COM1				
MSB							LSB				
Bit31-30 Res	erved										
Bitn Sn/C	OM1 LCD displa	ay element st	tate (0 <= n	<= 29).							
0 = 1	0 = Display element blank										
1 = 1	Display elemen	nt visible									

COM2 Display	COM2 Display Data Register										
COM2	COM2		0x500180A8			0xxxxx					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
S7COM2	S6COM2	S5COM2	S4COM2	S3COM2	S2COM2	S1COM2	S0COM2				
S15COM2	S14COM2	S13COM2	S12COM2	S11COM2	S10COM2	S9COM2	S8COM2				
S23COM2	S22COM2	S21COM2	S20COM2	S19COM2	S18COM2	S17COM2	S16COM2				
Reserved	Reserved	S29COM2	S28COM2	S27COM2	S26COM2	S25COM2	S24COM2				
MSB							LSB				
Bit31-30 Res	served										
Bitn Sn/C	COM2 LCD displ	ay element s	state (0 <= 1	n <= 29).							
0 =	Display eleme	nt blank									
1 =	Display eleme	nt visible									

COM3 Display	COM3 Display Data Register										
COM3		0x500180AC				0xxxxx					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
S7COM3	S6COM3	S5COM3	S4COM3	S3COM3	S2COM3	S1COM3	S0COM3				
S15COM3	S14COM3	S13COM3	S12COM3	S11COM3	S10COM3	S9COM3	S8COM3				
S23COM3	S22COM3	S21COM3	S20COM3	S19COM3	S18COM3	S17COM3	S16COM3				
Reserved	Reserved	S29COM3	S28COM3	S27COM3	S26COM3	S25COM3	S24COM3				
MSB							LSB				
Bit31-30 Res	served										
Bitn Sn/C	COM3 LCD displ	ay element s	state (0 <= 1	n <= 29).							
0 =	0 = Display element blank										
1 =	Display eleme	nt visible									

LCD Control Register 1											
LCDC1			0x500180B	0		0x39					
R/W	Reserved	R/W	Reserved	Reserved	Reserved	Reserved	R/W				
EN_SIM	EN_LCD	NCOM[1]	NCOM[0]	LCDTRIM[1]	LCDTRIM[0]	FRATE [1]	FRATE[0]				
MSB							LSB				
Bit 7	EN_SIM: Simul	taneous ena	ble for LCD	charge pump and	d display						
	0 = Delay LCD	screen ena	ble by 180 m	s to allow char	rge pump to set	tle					
	1 = Simultane	ous enable	for LCD scre	en and charge p	pump						
Bit6 EN_LCD: Display enable											
	0 = Display O	FF (Display	blanked)- l	cd_cp_clk disa	oled						
	1 = Display Of	N - lcd_cp_	clk enabled								
Bit5-4 NCOM[1:0]: Number of LCD backplanes / duty control											
	00 = 1 backpl	ane (COM3,	COM2 and COM	1 carry same d	rive signal as	COM0)					
	01 = 2 backplanes (COM3 carries same signal as COM0 and COM2 carries same signal as										
	COM1)										
	10 = 3 backpl	anes (COM3	carries same	signal as COM	0						
	11 = 4 backpl	anes (all o	f COM0-COM3	carry orthogona	al signals)						
Bit3-2	LCDTRIM[1:0]:	VLCD Outpu	t Voltage Tr	im (for contra	st control)						
	Note: Values	stated bel	ow are witho	ut LCD screen.	Actual voltage	es depend on	LCD screen				
	size and equ	ivalent cap	acitance and	can vary by 10	JO mV						
	Frame rate =	32 Hz									
	00 = 3.34 V										
	01 = 3.77 V	dofoult)									
	10 = 4.17 V	deraurt)									
	TI - 4.34 V	64 H 7									
	00 = 3.24 V										
	01 = 3.65 V										
	10 = 4.03 V (default)									
	11 = 4.36 V	,									
Bit1-0	FRATE[1:0]: L	CD frame ra	te setting								
	00 = 64 Hz		-								
	01 = 32 Hz (d	efault)									
	10 = 16 Hz										
	11 = 8 Hz										

LCD Control Register 2										
LCDC2			0x500180B1		0xAA					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
t1[1]	t1[0]	t2[1]	t2[0]	t3[1]	t3[0]	t4[1]	t4[0]			
MSB							LSB			
Bit7-0 tx[1:0]: Reserved for LCD timing control (internal to device manufacturer).										

3.1.13 GPIO

Each GPIO may be used as a digital output or a digital input. Additionally, several pins have additional functions. Some are connected to serial interface hardware and PORT C pins 7 to 4 can be connected to a PWM circuit. Each port B through E (port A is not used), has a register which contains the data output to or input through the associated pins. There is a read enable and output enable register for each port and there are two registers per port, which control the activity of a pull up or pull down function to ensure the pin is in a known state in input mode even if the driving source is floating (see Section 3.1.13.1 for exceptions). There are registers that allow configuring each pin to set an interrupt on a state change (except port E).

Figure 10: GPIO Functional Diagram

3.1.13.1 Notes to GPIO operation and configuration

Following are certain important aspects of GPIO operation and configuration

- Pins PD0/SCL and pin PD1/SDA do not support pull-up and pull-down functionality in GPIO mode. These pins are recommended to be used for I2C operation when register PCONF bit MDI2C = 1. In I2C mode only, the on-chip pull-up resistance is configurable though register PCONF bits I2C_RT]1:0].
- 2. To read any pin on PORT C, one of the pin-change interrupts on a port C pin must be enabled. If none of the pin-change interrupts on PORT C is enabled, then PORT B must be read before PORT C.
- 3. To read any pin on PORT D, one of the pin-change interrupts on a port D pin must be enabled. If none of the pin-change interrupts on PORT D is enabled, then PORT B must be read before PORT C.

4. Port E does not support read, pull-up or pull-down functionality. Pins of port E (if part of packaging option chosen) are intended for use as power switches eliminating external supply-gating FETs on the PCB in certain cases. Pins of port E can be paralleled to source power to external devices, such as memory chips; each port E pin can source up to 10 mA of current.

			Table 3.14 GPIO Port Map
Port	Bit	Pin	Function
	7	L11	Digital GPIO
	6	L10	Digital GPIO
D	5	K11	Digital GPIO
Б	4	K10	Digital GPIO
	3	J11	Digital GPIO
	2	J10	Digital GPIO
	1	H11	Digital GPIO
	0	H10	Digital GPIO
	7	Н9	Digital GPIO, optional PWM output (default PWM output)
	6	Н8	Digital GPIO, optional PWM output
C	5 G11		Digital GPIO, optional PWM output
4	4	G10	Digital GPIO, optional PWM output
	3 G		Digital GPIO, optional PWM output, digital real-time output A
	2	G8	Digital GPIO, optional PWM output, digital real-time output B
	1	G7	Digital GPIO, optional PWM output
	0	F8	Digital GPIO, optional PWM output
	7	E9	Digital GPIO, UART RXD input
	6	E8	Digital GPIO, UART TXD output
л	5	D10	SPI_CS-L output
D	4	D11	SPI_CK output
	3	C10	SPI_MO output
	2	C11	SPI_MI input
	1	D9	SDA input/output
	0	D8	SCL output
	2	E10	Digital GPIO, no interrupt capability
E	1	F10	Digital GPIO, no interrupt capability
	0	F9	Digital GPIO, no interrupt capability

3.1.13.2 GPIO Registers

Table 3.15 summarizes the registers controlling the behavior of the GPIO pins:

		Table 3.15 GPIO Registers	
Address	Register Name	Description	Reset Value
0x50000078	PORTB	Port B I/O Register	0x00
0x50000079	PORTC	Port C I/O Register	0x00
0x5000007A	PORTD	Port D I/O Register	0x00
0x5000007B	PORTE	Port E I/O Register	0xx0
0x5000007C	PORTBOE	Port B Output Enable Register	0x00
0x5000007D	PORTCOE	Port C Output Enable Register	0x00
0x5000007E	PORTDOE	Port D Output Enable Register	0x00
0x5000007F	PORTEOE	Port E Output Enable Register	0xx0
0x50018096	PCONF	Port Configuration Register	0x00
0x5001808E	PCPWMCFG	Port C PWM Configuration Register	0x0x
0x50018084	PBINT	Port B Interrupt Enable Register	0xAA02
0x5001808C	PCINT	Port C Interrupt Enable Register	0x0300
0x50018094	PDINT	Port D Interrupt Enable Register	0x000x0
0x50018080	PBPUN	Port B Pull up Enable Reg.	0x00
0x50018081	PBPD	Port B Pull down Enable Register	0x00
0x50018082	PBRE	Port B Read Enable Register	OxFF
0x50018088	PCPUN	Port C Pull up Enable Register	0x00
0x50018089	PCPD	Port C Pull down Enable Register	0x00
0x5001808A	PCRE	Port C Read Enable Register	OxFF
0x50018090	PDPUN	Port D Pull up Enable Register	0x00
0x50018091	PDPD	Port D Pull down Enable Register	0x00
0x50018092	PDRE	Port D Read Enable Register	OxFF

Detailed description of each register is shown below

Port B input and output register									
PORTB			0x50000078			0x00			
R/W	R/W	R/W	R/W R/W R/W		R/W	R/W	R/W		
PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0		
MSB							LSB		
Bit7-0 PB	[7:0]: Port 1	B register bi	ts.						
Whe	en reading, d	output of the	e digital Sch	mitt trigger	receiver.				
Whe	en writing, v	value driven	by the CMOS	driver to th	e pad.				
0 =	0 = Pin state is '0'								
1 :	= Pin state :	is `1'							

Port C inpu	Port C input and output register										
PORTC		0x5000079				0x00					
R/W	R/W	R/W R/W R/W R/W		R/W	R/W						
PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0				
MSB							LSB				
Bit7-4 PC	C[7:0]: Port	C register bi	its.								
Whe	en reading, c	output of the	digital Schm	itt trigger r	eceiver.						
Whe	en writing, v	value driven k	by the CMOS d	river to the	pad.						
0 =	0 = Pin state is read back as '0'										
1 =	= Pin state i	s read back a	as `1'								

Port D input	Port D input and output register										
PORTD		0x500007A				0x00					
R/W R/W		R/W	R/W	R/W	R/W	R/W	R/W				
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PDO				
MSB							LSB				
Bit7-0 PD[' When 0 = 1 =	7:0]: Port D n reading, ou n writing, va Pin state is Pin state is	register bit tput of the lue driven b `0' `1'	s. digital Schm y the CMOS c	hitt trigger driver to the	receiver. e pad.						

Port E input and output register										
PORTE				0xx0						
Reserved Reserved		Reserved	Reserved	Reserved	R/W	R/W	R/W			
-	-	-	-	-	PE2	PE1	PEO			
MSB							LSB			
Bit7-3 Rese	Bit7-3 Reserved									
Bit2-0 PORT	E[2:0]: Port E	register bits	ā .							
When	reading, outp	ut of the digi	tal Schmitt ti	rigger receive	r.					
When	writing, valu	e driven by th	e CMOS driver	to the pad.						
0 =	0 = Pin state is '0'									
1 =	1 = Pin state is `1'									
	TTH DUALC TO	±								

Port B output enable register										
PORTBOE		0x500007C				0x00				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
PBOE7	PBOE6	PBOE5	PBOE4	PBOE 3	PBOE2	PBOE1	PBOE0			
MSB							LSB			
Bit7-0 PBC	DE[7:0]: Port	E B output e	nable bits.							
0 =	0 = Pin is not driven									
1 =	1 = Pin is driven									

Port C out	Port C output enable register										
PORTCOE		0x500007D				0x00					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
PCOE7	PCOE6	PCOE5	PCOE4	PCOE 3	PCOE2	PCOE1	PCOE0				
MSB							LSB				
Bit7-4 PC	OE[7:0]: Port	t C output e	enable bits.								
0 =	0 = Pin is not driven										
1 :	= Pin is driv	ven									

Port D out	Port D output enable register											
PORTDOE			0x5000007E 0x00									
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
PDOE7	PDOE6	PDOE5	PDOE4	PDOE 3	PDOE2	PDOE1	PDOE0					
MSB							LSB					
Bit7-0 PD0	DE[7:0]: Por	t D output er	nable bits.									
0 =	= Pin is not	driven										
1 =	= Pin is dri	ven										

Port E output enable register											
PORTEOE			0x5000007F			0xx0					
Reserved	Reserved	Reserved	Reserved	Reserved	R/W	R/W	R/W				
_	-	-	-	-	PEOE2	PEOE1	PEOE0				
MSB	LSB										
Bit7-3 <i>Reser</i> Bit2-0 PEOE[0 = P 1 = P	ved 2:0]: Port E c Pin is not driv Pin is driven	output enable ren	bits.								

Port B inte	Port B interrupt enable register											
PBINT			0x50018084			0xAA02						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
PB3IE[1]	PB3IE[0]	PB2IE[1]	PB2IE[0]	PB1IE[1]	PB1IE[0]	PBOIE[1]	PBOIE[0]					
PB7IE[1]	PB7IE[0]	PB6IE[1]	PB6IE[0]	PB5IE[1]	PB5IE[0]	PB4IE[1]	PB4IE[0]					
MSB			LSB									
Bit15-0 Pbz	<pre>KIE[1:0]: Po:</pre>	rt B interru	pt enable bi	ts. For eac	ch pin x,							
00	= interrupt	disabled										
01	01 = interrupt enabled on rising edge											
10	10 = interrupt enabled on falling edge											
11	= interrupt	enabled on	both edges									

Port C inte	Port C interrupt enable register											
PCINT			0x5001808C			0x0300						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
PC3IE[1]	PC3IE[0]	PC2IE[1]	PC2IE[0]	PC1IE[1]	PC1IE[0]	PCOIE[1]	PC0IE[0]					
PC7IE[1]	PC7IE[0]	PC6IE[1]	PC6IE[0]	PC5IE[1]	PC5IE[0]	PC4IE[1]	PC4IE[0]					
MSB							LSB					
Bit15-0 Pc	<pre>kIE[1:0]: Po:</pre>	rt C interru	pt enable bi	ts. For eac	ch pin x,							
00	= interrupt	disabled										
01 = interrupt enabled on rising edge												
10	10 = interrupt enabled on falling edge											
11	= interrupt	enabled on	both edges									

Port D interrupt enable register											
PDINT			0x50018094			0x0000					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
PD3IE[1]	PD3IE[0]	PD2IE[1]	PD2IE[0]	PD1IE[1]	PD1IE[0]	PD0IE[1]	PDOIE[0]				
PD7IE[1]	PD7IE[0]	PD6IE[1]	PD6IE[0]	PD5IE[1]	PD5IE[0]	PD4IE[1]	PD4IE[0]				
MSB							LSB				
Bit15-0 Pdz	<pre>KIE[1:0]: Po:</pre>	rt D interrup	pt enable bit	ts. For each	ı pin x,						
00	= interrupt	disabled									
01 = interrupt enabled on rising edge											
10	10 = interrupt enabled on falling edge										
11	= interrupt	enabled on b	ooth edges								

Port B pull up enable register											
PBPUN			0x50018080			0x00					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
PBPUN7	PBPUN6	PBPUN5	PBPUN4	PBPUN3	PBPUN2	PBPUN1	PBPUNO				
MSB							LSB				
Bit7-0 PBH 0 = 1 =	PUN[7:0]: Po: = pull up end = pull up dia	rt B pull up abled sabled	enable bits	(active low)							

Port B pull	Port B pull down enable register											
PBPD			0x50018081			0x00						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
PBPD7	PBPD6	PBPD5	PBPD4	PBPD3	PBPD2	PBPD1	PBPD0					
MSB							LSB					
Bit7-0 PBI 0 = 1 =	PD[7:0]: Por = pull down o = pull down o	t B pull dowr disabled enabled	n enable bits									

Port C pull	Port C pull up enable register											
PCPU			0x50018088			0x00						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
PCPUN7	PCPUN6	PCPUN5	PCPUN4	PCPUN3	PCPUN2	PCPUN1	PCPUN0					
MSB							LSB					
Bit7-0 PCI	PUN[7:0]: Po	rt C pull up	enable bit	s (active lo	w).							
0 =	0 = pull up enabled											
1 =	= pull up di	sabled										

Port C pull down enable register										
PCPD			0x50018089			0x00				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
PCPD7	PCPD6	PCPD5	PCPD4	PCPD3	PCPD2	PCPD1	PCPDO			
MSB							LSB			
Bit7-4 PCB	PD[7:0]: Por	t C pull dow	n enable bit	ts.						
0 =	0 = pull down disabled									
1 =	= pull down	enabled								

Port D pull	up enable reg	jister							
PDPU			0x50018090			0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
PDPUN7	PDPUN6	PDPUN5	PDPUN4	PDPUN3	PDPUN2	-	-		
MSB							LSB		
Bit7-0 PDPU	JN[7:2]: Port	D pull up ena	able bits (ac	tive low)					
0 =	0 = pull up enabled								
1 =	pull up disab	oled							

Port D pull down enable register											
PDPD			0x50018091			0x00					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
PDPD7	PDPD6	PDPD5	PDPD4	PDPD3	PDPD2	-	-				
MSB							LSB				
Bit7-0 PDPI	D[7:2]: Port	D pull down e	enable bits.								
0 =	pull down di	sabled									
1 =	pull down en	abled									

Port B Read enable register								
PBRE			0x50018082			OxFF		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PBRE7	PBRE6	PBRE5	PBRE4	PBRE3	PBRE2	PBRE1	PBRE0	
MSB							LSB	
Bit7-0 PBB	RE[7:0]: Port	t B read ena	ble bits.					
0 = port cannot be read								
1 =	= port can be	e read						

Port C Read enable register								
PCRE 0x5001808A 0xFF								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PCRE7	PCRE6	PCRE5	PCRE4	PCRE3	PCRE2	PCRE1	PCRE0	
MSB							LSB	
Bit7-0 PCR	E[7:0]: Port	C read enabl	e bits.					
0 = port cannot be read								
1 =	port can be	read						

Port D Read enable register								
PDRE			0x50018092		0xff			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PDRE7	PDRE6	PDRE5	PDRE4	PDRE3	PDRE2	PDRE1	PDRE0	
MSB							LSB	
Bit7-0 PD	Bit7-0 PDRE[7:0]: Port D read enable bits.							
0 = port cannot be read								
1 :	= port can b	e read						

Pin con	nfigura	ation register							
PCONF			0x50018096				0x00		
R/W	N	R/W	R/W	R/W	R/W	R/W R/W R/W			
I2C_H	RT1	I2C_RT0	UPSWAP	UTXPOL	MDSPI	MDI2C	MDUART	MDSPICS	
MSE	3							LSB	
Bit7-6	I2C_F	RT[1:0]: I ² C Re	esistor Trim.						
	00 =	Open							
	01 =	1 k							
	10 =	10k							
	11 =	100k							
Bit5	UPSWZ	AP: UART Pins	Swap Bit						
	0 = E	Pins are not s	wapped						
	1 = H	Pins (TXD and	RXD) are swa	pped					
Bit4	UTXPO	DL: UART signa	ls polarity						
	0 = r	normal polarit	У						
	1 = i	inverted polar	ity						
Bit3	MDSPI	: SPI mode en	able						
	0 = 0	GPIO							
	1 = 5	SPI mode							
Bit2	MDI20	: I ² C mode ena	able						
	0 = 0	GPIO							
	1 = 1	² C mode							
Bit1	MDUAR	RTE: UART mode	enable						
	0 = 0	GPIO							
	1 = t	JART mode							
Bit0	MDSPI	CS: Enable so	ftware contr	ol over PIO_	CS1-L				
	0 = H	Hardware contr	ols rise and	fall of PIO	_CS1-L when	MDSPI = 1			
	1 = 5	Software contr	ols rise and	fall of PIO	_CS1-L when	MDSPI = 1	(through wri	lting port	
	D).								

Port C PWM configuration register									
PCPWMCFG		0x5001808E			0x80				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
PCPWM7	PCPWM6	PCPWM5	PCPWM4	-	-	-	-		
MSB							LSB		
Bit7-0 PCPW	Bit7-0 PCPWM[7:4]: Connect Port C to PWM								
0 = GPIO mode									
1 =	1 = PWM mode								

For minimal standby current, pull-up for PWM output pin defaulting to a low state should be disabled while in the standby state.

3.1.14 SPI Interface

The digital engine supports an SPI interface for system expansion. The microcontroller serves as the master. A GPIO pin can be used to gate power to an external SPI device. The SPI signal pins, SPI_MI/PD2, SPI_MO/PD3, and SPI_CK/PD4, may also be configured as GPIO pins.

The Serial Peripheral Interface (SPI) is a synchronous full-duplex serial interface. It communicates in master/slave mode where the master initiates the data transfer. For this SPI interface, only the master mode is implemented.

Features of this SPI interface are:

- Compatible with an Industry Standard SPI interface.
- Four-byte deep reception FIFO
- Four-byte deep transmission FIFO
- Interrupt upon events related to transmission, reception, and error:
 - Write Collision
 - Transmission FIFO full and empty
 - Reception FIFO full and empty

Table 3.16 SPI (Master) Signals						
Pin Name	Description					
SPI_MO/PD3	Serial Peripheral Interface 1 Data Output – Serial data output from the digital engine (master) to an external device, such as EEPROM. This signal pin may alternatively be used as GPIO pin GPIOD3.					
SPI_MI/PD2	Serial Peripheral Interface 1 Data Input – Serial data input to the digital engine (master) from an external device, such as EEPROM. This signal pin may alternatively be used as GPIO pin GPIOD2.					
SPI_CK/PD4	Serial Peripheral Interface 1 Clock – Serial data clock output from the digital engine to an external device, such as EEPROM. This signal pin may alternatively be used as GPIO pin GPIOD4.					
SPI_CS-L/PD5	Serial Peripheral Interface Chip Select – Active-low chip select output from the digital engine used for enabling SPI communication with an external device, such as EEPROM. Normally implemented with GPIOD5 pin. Signal should be maintained high when communication is not intended, including the reset condition. This signal pin may alternatively be used as GPIO pin GPIOD5.					

3.1.14.1 SPI Operation

Only the master mode is implemented. The microcontroller configures the clock frequency and generates the serial clock (SPI_CK) for the interface. Data transfer is synchronous with SPI_CK. The SPI is full duplex; data is transmitted and received simultaneously. Information is sent to the slave via the SPI_MO pin and received via the SPI_MI pin. The CPOL and CPHA bits in the SPI control register determine when to sample the data.

When CPOL=0, the base value of the clock is logic '0'. In this case, if CPHA=0, data is captured on the rising edge of SPI_CK and data is propagated on the falling edge of SPI_CK. For CPHA=1, data is captured on the falling edge of SPI_CK and data is propagated on the rising edge of SPI_CK.

If CPOL=1, the base value of the clock is logic '1'. In this case, if CPHA=0, data is captured on the falling edge of SPI_CK and data is propagated on the rising edge of SPI_CK. For CPHA=1, data is captured on the rising edge of SPI_CK and data is propagated on the falling edge of SPI_CK.

A timing diagram is shown below.

Figure 11: SPI Timing Diagram

After the desired configuration is set through configuration registers, a transfer is initiated by writing to the SPI Data Register (SPDR). The data is input into a 4-deep FIFO before being transmitted. When the data is transmitted, the slave also simultaneously transmits data for the ASIC to receive. The received data is stored in a separate 4-deep FIFO. The received data is accessed by reading the SPDR register.

To operate properly, the following steps must be followed:

- Configure and enable the SPI: Select if the interrupt is enabled, set the polarity, the phase, and the clock divider.
- Enable the interrupt (if required).
- Process the interrupt (if required) and detect the reason for the interrupt (error, transmission or reception related and act accordingly.

3.1.14.2 SPI Registers

The following registers are defined in the SPI interface:

Table 3.17 SPI Registers							
Address	Register Name	Description	Reset Value				
0x5000001C	SPCR	SPI Control Register	0x10				
0x5000001D	SPSR	SPI Status Register	0x00				
0x5000001E	SPDR	SPI Data Register	0x00				
0x5000001F	SPER	SPI Extension Register	0x00				

SPI Con	'I Control Register							
SPCR			0x500001C					0x10
R/W Reserved			Reserved	R	R/W	R/W	R/W	R/W
SI	INTE	-	-	MSTR	CPOL	CPHA	SCKSTD1	SCKSTD0
Μ	4SB							LSB
Bit7	SINTE: SH	PI Interrupt enabl	e:					
	0 = Disab	oled						
	1 = Enabl	Led						
Bit4	MSTR: Mas	ster Mode Select b	it:					
	SPI alway	ys in master mode;	Set to log	ic "1".				
Bit3	CPOL: SPI	C clock polarity:						
	0 = Base	value of clock is	zero					
	1 = Base	value of clock is	one					
Bit2	CPHA: SPI	[clock phase:						
	0 = Data	captured on clock	transition	from k	base, p	ropagat	ed on tra	nsition to base
	1 = Data captured on clock transition to base, propagated on transition from base							
Bit1-0	SCKSTD[1:	:0]: SPI standard	clock divid	er sele	ection			
	Refer to	SPER register for	system clo	ck				

SPI Status Register								
SPSR				0x5000001D			0x00	
R/W	7	R/W	Reserved	Reserved	R/W	R/W R/W R/W		
SINT	F	SWCOL	-	-	STXFF	STXFE	SRXFF	SRXFE
MSE	3							LSB
Bit7	SINT	F: SPI interr	upt flag:					
	0 =	Interrupt not	asserted					
	1 =	Interrupt ass	erted					
Bit6	SWCO	L: SPI write	collision set w	hen SPDR regist	er written	to while t	ransmit FIE	70 is
	ful	1:						
Bit3	STXF	F: SPI transm	it FIFO full:					
	0 =	Transmit FIFO	not full					
	1 =	Transmit FIFO	full					
Bit2	STXF	E: SPI transm	it FIFO empty:					
	0 =	Transmit FIFO	not empty					
	1 =	Transmit FIFO	empty					
Bit1	SRXF	F: SPI recept	ion FIFO full:					
	0 = Reception FIFO not full							
	1 = Reception FIFO full							
Bit0	SRXFE: SPI reception FIFO empty:							
	0 = Reception FIFO not empty							
	1 =	Reception FIF	0 empty					

SPI Data Register							
SPDR 0x5000001E 0x						0xXX	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
SPID7	SPID6	SPID5	SPID4	SPID3	SPID2	SPID1	SPID0
MSB LSB							
Bit7-0 SPID[7:0]: SPI data, both transmitted and received.							

SPI Extension Register SPER 0x5000001F 0x00 R/W R/W Reserved Reserved R/W R/W Reserved Reserved SICNT1 SINCT0 _ SPE SCKEXT1 SCKEXT0 _ MSB LSB Bit7-6 **SICNT[1:0]:** SPI Interrupt Counter Bits: 00 = SINTF set after every completed transfer 01 = SINTF set after two completed transfers 10 = SINTF set after three completed transfers 11 = SINTF set after four completed transfers Bit2 SPE: SPI enable: 0 = SPI module disabled 1 = SPI module enabled Bit1-0 SCKEXT[1:0]: SPI extended clock divider SCKEXT Result Clock Divider SCKSTD 00 00 = System Clock/2 01 00 = System Clock/4 10 00 = System Clock/16 = System Clock/32 11 00 00 01 = System Clock/8 01 01 = System Clock/64 10 01 = System Clock/128 01 = System Clock/256 11 = System Clock/512 00 10 01 10 = System Clock/1024 10 10 = System Clock/2048 11 10 = System Clock/4096 11 = Reserved XX

3.1.15 UART Interface

The ASIC includes a Universal Asynchronous Receiver Transmitter (UART) module. The main characteristics are as follows:

- Interrupt available for transmission, reception, and error events
- Reception timeout timer
- Programmable break reception and transmission
- Programmable parity with "stick" parity option
- Number of bits selectable from 5 to 8
- Number of stop-bits selectable as 1, 1¹/₂, or 2
- Programmable loop-back
- Swappable TXD and RXD
- Transmitter Polarity selection

The UART protocol requires two signals (TXD and RXD) assigned to pins TXD and RXD respectively.

Table 3.18 UART Signals					
Pin Name	Description				
TXD/PD6	UART Transmitted Data Output – Transmitted data output from the digital engine's UART to an external device, such as an RF module. The signal marking level is high and the spacing level low. This signal pin may alternatively be used as GPIO pin GPIOD6.				
RXD/PD7	UART Received Data Input – Received data output to the digital engine's UART from an external device, such as an RF module. The signal marking level is high and the spacing level low. This signal pin may alternatively be used as GPIO pin GPIOD7.				

3.1.15.1 UART Operation

Pins TXD and RXD are allocated for UART communication and must be configured by setting bit MDUARTE in register PCONF

- Select whether pins are to be used in normal configuration or swapped and select polarity. Selection is made via the UPSWAP and UTXPOL bits of Pin configuration register PCONF.
- Define the following parameters using the UART Line Control Register UARTLCTRL:
 - Loop back: If testing, connects the output to the input.
 - Break enable: Pull output down while enabled.
 - Stick parity: Forces parity to stable value.
 - Even/Odd parity selection and enable: Select no, even, or odd parity.
 - \circ Number of stop bits: Select 1, 1½, or 2 stop bits.

- Data size: Select 5, 6, 7, or 8 data bits.
- Define baud rate using the UART Baud Rate Divider Register UARTDIV. The baud rate is calculated as follows:

$$Baud = \frac{Fclk}{16 * (UARTDIV + 1)}$$

- Enable the UART using UART Enable Register UARTCTRL1 and its interrupt using UART Interrupt Control Register UARTICTCL. The UART may generate an interrupt for events related to:
 - Transmission completed.
 - Reception: Timeout of ≈40 bit-times without reception, and data received (one or three bytes received, programmable).
 - Errors detected: Framing error, parity error, and overrun error.
 - Break signal detected (received).

3.1.15.2 UART Registers

The following registers are defined in the UART interface:

Table 3.19 UART Registers							
Address	Register Name	Description	Reset Value				
0x50000010	UARTDATA	UART Data Register	0x00				
0x50000011	UARTICTRL	UART Interrupt Control	0x00				
		Register					
0x50000012	UARTLCTRL	UART Line Control Register	0x00				
0x50000013	UARTEN	UART Enable Register	0x00				
0x50000014	UARTLSTAT	UART Line Status	0x00				
0x5000016-	UARTDIV	UART Baud Rate Divider	0x0000				
0x50000017							

UART Data Register							
UARTDATA		0x50000010			0xXX		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
UARTD7	UARTD6	UARTD5	UARTD4	UARTD3	UARTD2	UARTD1	UARTD0
MSB							LSB
Bit7-0 UARTD[7:0]: UART data, both transmitted and received.							

UART Interrupt Control Register							
UARTICTC	L		0x50000011		0x00		
R/W	R/W	R/W R/W R/W R/W R/W R/W					
UISTTS3	UISTTS2	ISTTS2 UISTTS1 UISTTS0 UTOUTIEN URXERREN UTXIEN UR					URXIEN
MSB							LSB
Bit7-4	UISTTS[3:0]: U	ART Interrup	t status:				
	0001 = No Inte	rrupt assert	ed				
	0010 = Transmi	ssion comple	ted				
	0100 = Data re	ceived					
	0110 = Receptio	on error					
	1100 = Receptio	on timeout (≈40 bit-time	.)			
Bit3	UTOUTIEN: UART time-out interrupt enable bit:						
	0 = Disabled						
	1 = Enabled						
Bit2	URXERREN: UART reception error interrupt enable bit:						
	0 = Disabled	ed					
	1 = Enabled	L					
Bitl '	UTXIEN: UART transmission completed interrupt enable bit:						
	0 = Disabled	Disabled					
	1 = Enabled						
Bit0 ·	URXIEN: UART r	eception int	errupt enabl	e bit:			
	0 = Disabled						
	1 = Enabled						

UART Li	ine Contro	ol Register	r					
UARTLCTCL				0x50000012	•	0x00		
R/W	R/W R/W		R/W	R/W	R/W	R/W	R/W	R/W
ULOOPEN UBREAKEN		USTICKEN	UPARITY	UPAREN	USTOP	USIZE	USIZE	
MSB	5							LSB
Bit7	ULOOPEN	UART 100	p back status:					
	0 = UAR	I loop bac	k disabled					
	1 = UAR	I loop bac	k enabled					
Bit6	UBREAKE	N: UART bre	eak enable:					
	0 = Disa	abled						
	1 = Enab	oled						
Bit5	USTICKE	N: UART st	ick parity enab	ole bit:				
	0 = Disa	abled						
	1 = Enab	oled						
Bit4	UPARITY	UART par	ity bit:					
	0 = Odd	parity						
	1 = Even	n parity						
Bit3	UPAREN: UART parity enable bit:							
	0 = Disa	abled						
	1 = Enab	oled						
Bit2	USTOP: UART stop bit:							
	0 = One stop bit							
	1 = 1.5	1 = 1.5 stop bits for 5-bit transmission, otherwise 2 stop bits						
Bit1-0	USIZE: UART transmission size:							
	00 = 5 - 3	oit data						
	01 = 6-3	oit data						
	10 = 7 - 3	oit data						
	11 = 8-bit data							

UART Enable Register								
UARTCTRL1				0x50000013		0x00		
Reserved Reserved			Reserved	Reserved	R/W	R/W	R/W	R/W
-		-	-	-	UARTEN	URXFS	UTXFRST	URXFRST
MSI	В							LSB
Bit3	UART	EN: UART enab	le:					
	0 =	Disabled						
	1 =	Enabled						
Bit2	URXF	URXFS: UART RX FIFO interrupt level:						
	0 =	UART interrup	ts after one	byte received	L			
	1 =	1 = UART interrupts after three bytes received						
Bit1	UTXFRST: UART transmission FIFO reset bit:							
	0 = TX FIFO not reset							
	1 =	TX FIFO reset	FO reset					
Bit0	URXF	URXFRST: UART reception FIFO reset bit:						
	0 = RX FIFO not reset							
	1 = RX FIFO reset							

UART Li	ne Status Regis	ter							
UARTSTA	TUS	0x50000014			0x00				
R/W	R/W	R/W	R/W R/W R/W R/W						
UERR	UTXEMPTY	UTXFFEMPTY	UBREAKINT	UFRMERR	UPRTYERR	UOVRUNERR	UDTRDY		
MSB							LSB		
Bit7	UERR: UART err	or:							
	0 = No error								
	1 = Error in U.	ART							
Bit6	UTXEMPTY: UART	transmission e	mpty:						
	0 = Transmitte	r not empty							
	1 = Transmitte	r empty							
Bit5	UTXFFEMPTY: UA	RT transmission	FIFO empty:						
	0 = TX FIFO no	t empty							
	1 = TX FIFO emp	empty							
Bit4	UBREAKINT: UAR	T break interru	pt:						
	0 = No break i	nterrupt							
	1 = Break inte	rrupt							
Bit3	UFRMERR: UART	framing error:							
	0 = No framing	0 = No framing error							
	1 = Framing er	ror							
Bit2	UPRTYERR: UART	UPRTYERR: UART overrun error:							
	0 = No parity	0 = No parity error							
	1 = Parity err	1 = Parity error							
Bit1	UOVRUNERR: UART transmission size:								
	0 = No overrun	= No overrun error							
	1 = Overrun er	1 = Overrun error							
Bit0	UDTRDY: UART d	ata ready:							
	0 = No data re-	ady (reception)							
	1 = Data ready	(reception)							

UART Baud Rate Divider Register (16-bit)							
UARTDIV		0x50000016			0x0000		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
UDIV7	UDIV6	UDIV5	UDIV4	UDIV3	UDIV2	UDIV1	UDIV0
UDIV15	UDIV14	UDIV13	UDIV12	UDIV11	UDIV10	UDIV9	UDIV8
MSB							LSB
Bit15-0 UDIV[15:0]: UART clock divider							

3.1.16 I²C Interface

The digital engine supports an I²C interface for system expansion. The pins are to include a pull-up capability that can be software enabled or disabled. The I2C signal pins, SCL/PD0 and SDA/PD1, may also be configured as GPIO pins. The MDI2C bit must be set in the PCONF register to enable I²C operation.

The main characteristics of the implementation are:

- Support for slave and multi-master modes
- General call support
- 7-bit or 10-bit address
- Address masking

Table 3.20 I2C Signals				
Pin Name	Description			
SDA/PD1	I2C Serial Data I/O – I2C data signal from the digital engine to external devices. Internal pull-up can be enabled or disabled under software control. This signal pin may alternatively be used as GPIO pin GPIOD1.			
SCL/PD0	I2C Serial Clock Output – I2C clock output from the digital engine to external devices. Internal pull-up can be enabled or disabled under software control. This signal pin may alternatively be used as GPIO pin GPIOD0.			

3.1.16.1 I²C Operation in Slave Mode

In order to configure Slave Mode, the following steps must be carried out:

- Select the peripheral as slave. Selection is made by clearing the I²C Master/Slave bit IMS of I²C Control Register 2 I2CCTRL2.
- Select the address size. Selection is made by the configuring the I²C selection of address size bit ISTPSIZE of I²C Control Register 1 I2CCTRL1.
- Load the address into I²C Address 0 Register I2CADDR0 and I²C Address 0 Register I2CADDR1.
- Select if general call is to be supported. Selection is made by configuring the general call address bit IGC of I²C Control Register 1 I2CCTRL1.
- Select address masking, if required. If required, the peripheral provides a 5-bit address mask, in I²C Control Register 2 I2CCTRL2, for the lower 5 address bits. Each bit masks the corresponding bit in address comparison when set.
- Enable the interface and its interrupts if used. Enabling is controlled by configuring the I2C Enable bit IEN in I²C Control Register 2 I2CCTRL2.
- Define the interrupt handlers if required.

The several phases of the slave side of the communications are described in the following paragraphs:

3.1.16.1.1 PC Access Sequence, Slave Mode

I²C addresses are always prefixed by START or Repeated Start condition.

3.1.16.1.1.1 7-bit Address Mode

The slave, once enabled, waits for an I²C Start condition to happen. Once a Start condition is selected, the slave shifts in the next 8 bits into an internal shift register and the following actions take place:

- The IBUF bit is set.
- If the address contained in the internal register matches the one from the register. I2CADDR0, the interface sends back an ACK and an interrupt is asserted.
- At this time, the application must read the I2CSTATUS register and check the IADDRR and IRWBUSY bits.
- The IADDRR should be '1' (indicating that an address has been received).
- The IRWBUSY bit indicates if the operation is a write ('1') or a read ('0').
- After reading these bits, the application must read the I2CDATA register to clear the buffer.
- If IBUFF is set before receiving the address or IRBUFOVL is set when receiving the address, then the slave will send NACK and issue an error interrupt to notify the application of these errors.

3.1.16.1.1.2 10-bit Address Mode

Two address-byte receptions are required in this mode. The first byte consists of the following sequence:

1 1 1 1 0 A[9] A[8] 0'

Where A[9:8] are the upper two bits of the I^2C address.

The last bit, R/W (1=read, 0=write), must be 0 so the slave can receive another address byte. If the upper two address bits match, then the Slave sends an ACK and asserts an interrupt.

At this point, the application must read the I2CSTATU register to check IADDRR and IRWBUSY bits, which should be 1 (address byte) and 0 (write operation). The application then needs to read the I2CDATA register to clear the buffer.

The second byte contains address bits A[7:0]. In the same fashion, if the lower 8 address bits match, then the slave sends the ACK and asserts an interrupt.

The application reads the I2CSTATU register to check IADDRR bit, which should be logic 1 (address byte). The application then needs to read the I2CDATA register to clear the buffer.

If it is an I²C read access, then after two address-byte receptions, the slave shall receive a Repeated Start condition and then the first address byte again with last bit, R/W (1=read, 0=write), being 1. The slave sends the ACK bit and asserts an interrupt.

The application reads I2CSTATUS register to check IBUFF and IRWBUSY bits, which should be 1 (address byte) and 1 (read operation). The application then needs to read the I2CDATA register to clear the buffer.

Figure 15 illustrates a 10-bit address mode receiving timing waveform.

3.1.16.1.2 PC Access Sequence, Write Data Phase

If the received R/W bit (1=read, 0=write) is 0, it is an I²C write access and the slave remains in receiving mode. Every time the slave shifts in a byte, it sends the ACK bit as long as the IBUFF bit is cleared before receiving the data and the IRBUFOVL bit is cleared when receiving the data.

In slave mode, the peripheral asserts an interrupt after receiving each byte from the I²C bus. The application needs to read the I2CSTATUS register to check the status and then the I2CDATA register to fetch the data. The write data phase is concluded when detecting a Stop or Repeated Start condition.

Figure 13: Slave Mode Timing w/CLK_ST_ENB=0 (Reception, 7-bit Address)

3.1.16.1.3 PC Access Sequence, Read Data Phase

If the received R/W bit (1=read, 0=write) is 1, it is an I²C read access and the slave switched to transmitting mode. Before each byte shifts out, the ICLKSTR bit is automatically cleared to hold the SCL pin low (known as clock stretching). The application needs to load the I2CDATA register with the byte to be transmitted and then set ICLKSTR bit to release SCL pin. Every time the slave shifts out a byte, it receives the ACK/NACK bit. If it receives the ACK bit, the slave automatically clears the ICLKSTR bit, and the application needs to load the I2CDATA register and set the ICLKSTR bit to resume transmission. If it receives the NACK bit, which means the Master device has completed reading data, the Slave releases both SCL and SDA. The Slave asserts an interrupt after receiving the ACK/NACK bit. The read data phase is concluded when receiving the NACK bit or detecting Repeated Start or Stop condition. Figures below illustrates I²C read access.

Figure 15: Slave Mode Timing (Reception, 10-bit Address)

Figure 16: Slave Mode Timing (Transmission, 10-bit Address)

3.1.16.2 I²C Operation in Master Mode

In order to configure Master Mode, the following steps must be carried out:

- Select the master mode. Selection is made by setting the I²C Master/Slave bit IMS of I²C Control Register 2 I2CCTRL2.
- Define the baud rate. The equation defining the baud rate as a function of the system clock is:

$$Fi2c = \frac{Fclk}{2*(divider+1)}$$

Where Fi2c is the frequency of the I²C interface, divider is the I²C divider, and Fclk is the system clock.

- Enable the interface. Enabling is controlled by configuring the I2C Enable bit IEN in I²C Control Register 2 I2CCTRL2.
- Enable the interrupts and define the corresponding handlers.
- Define the interrupt handlers if required.

From this point on, the application must handle the communication. The following paragraphs describe general steps.

3.1.16.2.1 Configuration Settings

The Master controls SCL and SDA when issuing Start, Repeated Start, and Stop conditions. It also drives (release/drain) SCL and SDA when transmitting address/data bytes as well as ACK/NACK bits after receiving data bytes.

When IEN and IMS bits are both set in the I2CCTRL2 register, the interface is configured as an I²C Master.

3.1.16.2.2 Baud Rate Generator Configuration

A baud rate generator (BRG) inside the peripheral serves as an engine to time SCL transitions during a data transfer as well as the transitions of both SCL/SDA during Start, Repeated Start, and Stop conditions.

The BRG consists of an 8-bit counter that, when enabled, loads the value from the I2CADDR0 register and counts down to 0. It then goes back to the I2CADDR0 register value and repeats the counting down process. When the BRG counter counts down to 0, it triggers the SCL transitions during data transfer and SCL/SDA transitions during Start, Repeated Start, and Stop conditions.

The peripherals baud rate is determined by the system clock frequency Fclk and divider. The equation is:

$$Fi2c = \frac{Fclk}{2*(divider+1)}$$

3.1.16.2.3 Start Condition

The Master issues a Start condition when the IRSTRB bit is set by the application. When detecting the issued Start condition, the Master asserts an interrupt and clears the ISTRSTRETCH bit. The application reads the I2CSTATUS register to clear the interrupt condition. At this point, the ISTRR bit is set.

Once the ISTRSTRETCH bit is set, if SCL or SDA is already sampled low when the ISTRSTRETCH bit is set, then it is concluded that there is a bus collision due to another I²C bus Master on the bus, and the bus collision interrupt is asserted. The application must read the I2CSTATUS register to clear this interrupt condition.

3.1.16.2.4 Repeated Start Condition

The Master issues a Repeated Start condition when the ISTRSTRETCH bit is set by the application. When detecting the issued Repeated Start condition, the Master asserts an interrupt and clears the IRSTR bit. The application reads the I2CSTATUS register to clear the interrupt condition. At this point, the ISTRR bit is set.

Once the IRSTRS bit is set, if SCL is sampled low before SDA goes low, or if SDA is sampled low when SCL goes from low to high, then it is concluded that there is an I²C bus collision and collision interrupt is asserted. The application reads the I2CSTATUS register to clear the interrupt condition.

3.1.16.2.5 Stop Condition

The Master issues a Stop condition when the ISTPSIZE bit is set by the application. When detecting the issued Stop condition, the Master asserts an interrupt and clears the ISTPSIZE bit. The application reads the I2CSTATUS register to clear the interrupt condition. At this point. The ISTRR bit is set.

Once the ISTPSIZE bit is set, if SDA is sampled low one baud period (T_{br}) after it is released by the peripheral, or, after SCL is released, SCL is sampled low before SDA goes high, then it is concluded that there is an I²C bus collision and collision interrupt is asserted. The application reads the I2CSTATUS register to clear the interrupt condition.

3.1.16.2.6 Acknowledge Bit

The Master transmits ACK/NACK bit when ISACK is set by the application. If the value of ISNACK is 1, a NACK bit is transmitted, otherwise an ACK bit is transmitted. The Master asserts an interrupt and clears ISNACK. The application reads the I2CSTATUS register to clear the interrupt condition.

If the Master transmits a NACK bit but detects an ACK bit, then there is an I²C bus collision and collision interrupt is asserted. The application reads the I2CSTATUS register to clear the interrupt condition.

3.1.16.2.7 PC Write Access Sequence

The typical I²C write access sequence consists of the following steps:

- The application sets the ISTRETCH bit to issue a Start condition.
- The Master detects the Start condition and asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt and check the ISTRR bit.
- The application programs the I2CDATA register with the appropriate I²C Slave's address, then the Master starts transmitting the address byte.
- After sampling ACK/NACK sent by the Slave, the Master asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt and check the IACKR bit.
- The application programs the I2CDATA register with the data byte to be transmitted, then the Master starts transmitting the data byte.
- After sampling the ACK/NACK bit sent by the Slave, the Master asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt condition and check the IACKR bit.
- Previous two steps are repeated to transmit more bytes.
- The application can access a different I²C Slave or read from the same one by setting the IRSTR bit. This causes the Master to issue a Repeated Start condition. When the condition is sampled, the Master asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt condition and check the ISTRR bit.
- The application concludes the current transfer by setting the ISTPSIZE bit, and the Master issues a Stop condition. When the condition is sampled, the Master asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt and check the ISTPR bit.

Figure below shows a timing waveform of Master write access. The only difference between 7-bit and 10-bit address mode is that the application needs to program two address bytes in 10-bit mode.

ND SEMICONDUCTOR		Preliminary Datasheet iND86201 "Ernie"
← I2C_DATA is programmed transmitting address	- I2C_DATA is programmed transmitting data	- I2C_DATA is programmed transmitting data
	D[7] X D[6] X X D[0] ACK	/ D[7] X D[6] X X D[0] / ACK
		1_2\3\oto7\8_9\p
	ΠΠ	<u>́П</u> П_
C END □	└─ ► cleared bt reading I2C_STATUS	→ cleared bt reading I2C_STATUS
cleared automatically by hardware		
P_ENB		Π
		cleared automatically by hardware -

Figure 17: Master Timing Waveform (Transmission)

3.1.16.2.8 PC Read Access Sequence

The typical I²C read access sequence consists of the following steps:

- The application sets the ISTRETCH bit to issue a Start condition.
- The Master detects the Start condition and asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt and check the ISTRR bit.
- The application programs the I2CDATA register with the appropriate I²C Slave's address, then the Master starts transmitting the address byte.
- After sampling ACK/NACK sent by the Slave, the Master asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt and check the IACKR bit.
- The application programs the I2CDATA register with the data byte to be transmitted, then the Master starts transmitting the data byte.
- After sampling the ACK/NACK bit sent by the Slave, the Master asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt condition and check the IACKR bit.
- The application sets the IRCSTRT bit, which enables the Master to pulse the SCL pin and shift in a data byte. After shifting in the whole data byte, the Master asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt. The application then reads the I2CDATA register to fetch the received data byte.
- The application clears the ISNACK bit (Acknowledge bit to be sent) and sets the ISACK bit. The Master transmits the ACK bit. After the transmission, the Master asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt.
- Previous two steps are repeated to receive more bytes.
- The application can access a different I²C Slave or write to the same one by setting the IRSTR bit. This causes the Master to issue a Repeated Start condition. When the condition is sampled, the Master asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt condition and check the ISTRR bit.
- If the data byte being received is the last one, after clearing the interrupt, the user sets the ISNACK (Not Acknowledge bit to be set) and IRSTS bits. The Master transmits NACK bit. After the transmission, the MASTER asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt and check the ISTPR bit.
- The application concludes the current transfer by setting the ISTPSIZE bit, and the Master issues a Stop condition. When the condition is sampled, the Master asserts an interrupt. The application reads the I2CSTATUS register to clear the interrupt and check the ISTPR bit.

Figure 18: Master Timing Waveform (Reception)

3.1.16.2.9 RW_BUSY Indicator

Whenever detecting a Start/Stop condition, wish it did not issue itself, the Master asserts/de-asserts RW_BUSY to indicate the busy/idle status of the I²C bus. The application can check the IRWBUSY bit before issuing a Start condition so a bus collision can be avoided.

3.1.16.3 I2C Registers

The following registers are used to control the I^2C interface:

Table 3.21 I2C Registers						
Address	Register Name	Description	Reset Value			
0x5000008	I2CSTATUS	I2C Status Register	0x10			
0x50000009	I2CCTRL1	I2C Control Register 1	0x40			
0x5000000A	I2CCTRL2	I2C Control Register 2	0x02			
0x500000B	I2CDATA	I2C Data Register	0x00			
0x5000000C	I2CADDR0	I2C Address Register 0	0x00			
0x500000D	I2CADDR1	I2C Address Register 1	0x00			

I ² C Stat	us Register	-							
I2CSTAT	JS		0x5000000	8	0x10				
R	R	R	R	R	R	R	R		
IACKR	IADDRR	ISTRR	ISTPR	IRWBUSY	IBUFF	IWBUFOVL	IRBUFOVL		
MSB							LSB		
Bit7	17 IACKR: Acknowledge received								
	0 = Received								
	1 = Not receiv	red							
Bit6	IADDRR: Data/A	ddress rece	ived (slave	mode)					
	0 = DATA recei	ved							
	1 = ADDRESS re	eceived							
Bit5	ISTRR: Start b	it received							
	0 = Not receiv	red							
	1 = Received								
Bit4	ISTPR: Stop bi	t received	(slave mode)						
	0 = No Stop bi	t received							
	1 = Stop bit r	received							
Bit3	IRWBUSY: Read/	Write Busy:							
	Master Mode:								
	0 = Bus r	ot being ac	cessed						
	1 = Bus k	eing access	ed						
	Slave Mode:								
	0 = I ² C W	rite operat	ion (Slave r	eceives data)					
	1 = I ² C r	ead operati	on (Slave tr	ansmits data)					
Bit2	IBUFF: Buffer	Full							
	0 = Buffer emp	oty							
	1 = Buffer ful	l, either i	t received d	lata or there's	an untran	smitted byte			
Bit1	IWBUFOVL: Writ	e buffer ov	erflow						
	0 = Buffer emp	oty							
	1 = Internal shift register is full and the I2CDATA register was written								
Bit0	IRBUFOVL: Data	/Address re	ceived (slav	e mode)					
	0 = Register w	as read				_			
	1 = Internal s	shift regist	er full and	another byte re	eceived fr	om I ² C bus			
NOTE: WI	hile IRBUFOVL i	s set, the	shift-in of	bits from bus :	is stopped	•			

I ² C Con	trol Register 1								
12CCTRI	.1		0x5000009)		0x40			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
IRSTR	ICLKSTR	IGC	IRCSTRT	ISNACK	ISACK	ISTPSIZE	ISTRSTRE		
MSB							LSB		
Bit7	IRSTR: Repeate	d Start k	oit (Master Onl	y)			•		
	0 = Repeated start bit disabled								
	1 = Issue star	t-bit ena	able (when set,	the I ² C tran	smits Repea	ated Start bit)	, cleared by		
	HW.								
Bit6	ICLKSTR: Clock	stretch	(Slave Only)						
	0 = SCL held 1	OW							
	1 = SCL releas	ed							
Bit5	IGC: General c	all addre	ess (Slave Only	7)					
	0 = General ca	ll addres	s disabled						
	1 = General ca	ll addres	s enabled						
Bit4	IRCSTRT: Start	bit rece	eption (Master	Only and clea	ared by HW)				
	0 = Receive op	eration r	not allowed						
	1 = Receive operation starts (the receive operation starts when this bit is set)								
Bit3	ISNACK: ACK bi	t to be t	ransmitted. (M	Master Only)					
	0 = ACK is tra	nsmitted	upon reception	n of byte					
	1 = NACK is tr	ansmitted	l upon receptic	on of byte					
Bit2	ISACK: ACK bit	(Master	Only)						
	0 = No ACK/NAC	K bit tra	ansmitted						
	1 = Acknowledg	e (ACK/NA	ACK, defined by	/ ISNACK) is t	ransmitted				
Bit1	Bit1 ISTPSIZE: Stop bit or selection of address size								
	Master Mode:								
	0 = No st	op bit se	ent						
	1 = Stop	bit sent							
	Slave Mode:								
	0 = 7-bit	address							
	1 = 10-bi	t address	3						
Bit0	ISTRSTRETCH: S	tart and	stretch						
	Master Mode:								
	0 = No start bit sent								
	1 = Send	start bit	:						
	Slave Mode:								
	0 = No cl	ock stret	ch						
	1 = Clock	stretche	ed						

I ² C Cont	trol Register 2						
12CCTRL	2		0x500000A			0x02	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
IMSK4	4 IMSK3	IMSK2	IMSK1	IMSK0	IEN	IFILTER	IMS
MSB							LSB
Bit7-3	IMSK[4:0]: I ² C	Address mask	(Slave Only)				
	0 = Repeated st	art bit disab	led				
	1 = Issue start	-bit enable	when set, th	ne I ² C tran	smits Repeate	ed Start bit), cle	eared by
	HW.						
Bit2	IEN: I ² C Enable	bit					
	$0 = I^2 C$ disable	d					
	$1 = I^2C$ enabled						
Bit1	IFILTER: I ² C fi	lter					
	0 = Filter disa	bled					
	1 = Filter enab	oled					
Bit0	IMS: I ² C Master	/Slave					
	$0 = I^2C$ slave						
	$1 = I^2C$ master						
NOTE: I	n order to ignor	e glitches or	I ² C bus, a	3-tab medi	an filter ope	erating at system	clock
	rate is implem	ented on the	incoming SCI	and SDA c	lata paths.	This filter can b	e
	enabled/disabl	ed by setting	/clearing IH	FILTER. Th	ne truth tabl	e of the median f	ilter is
	as follows:						
	Filter Tabs a	and Output			1		
	Filter tab 0	Filter ta	ab 1 Filte	er tab 2	Filter outp	ut	
	0	0		0	0		
	0	0		1	0		
	0	1		0	0		
	0	1		1	1		
	1	0		0	0		
	1	0		1	1		
	1	1		0	1		
	1	1		1	1		

I ² C Data Register							
I2CDATA	TA 0x500000B 0x00			0x500000B			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
IDT7	IDT6	IDT5	IDT4	IDT3	IDT2	IDT1	IDT0
MSB							LSB
Bit7-0 IDT[7:0]: I ² C Data							

I ² C Address 0 Register								
I2CADDR0		0x500000C			0x500000C 0x00			
R/W	R/W	R/W R/W R/W R/W R/W R/W				R/W		
IADDR7	IADDR6	IADDR5	IADDR4	IADDR3	IADDR2	IADDR1	IADDR0	
MSB							LSB	
Bit7-0 IADDR[7:0]: In Master mode, the data represents the 8-bit clock frequency divider counter maximum value. In Slave mode, it represents the lower 8-bit I ² C address.								

I ² C Address 1 Register							
I2CADDR1		0x500000D			0x00		
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	R/W	R/W
-	-	-	-	-	-	IADDR9	IADDR8
MSB							LSB
Bit1-0 IADDR[9:8]: In Slave mode, the data represents the upper 2-bit I ² C address. In Master mode, the data is ignored.							

3.1.17 USB Interface

The digital engine supports a full-speed USB interface for data transfers with an external PC or manufacturing systems. An external USB_5V_IN pin provides access to power from the USB connection and detection of an external USB connection. The rising edge of the USB supply voltage generates an interrupt that can be used to wake the microcontroller. A USB_3p3V_OUT pin is provided for a 1 μ F external capacitor used to decouple a regulated 3.3 V supply generated from USB power. When connected to USB power, the device will switch to this source from battery power to conserve battery life, as USB communication is likely to be processor and power intensive. The ARM core will be powered from the USB supply and basic LCD functionality will be maintained using USB power. SPI, I2C, and UART interfaces are fully functional when powered by the USB port. The GPIO power pins, GPIOE0 through GPIOE3, may be used to selectively source power, including USB derived power, to external devices. The device internally support a switched 1.5 K Ω pull-up to 3.0 V through 3.6 V on USBDP to negotiate full-speed operation. The high-speed clock required by the USB interface is derived from the 32.768 KHz oscillator using the high frequency PLL (see Figure 3).

Table 3.22 USB Signals				
Pin Name	Description			
USB_DM	USB Data Signal Minus – USB data signal from/to digital engine. Series resistor required.			
USB_DP	USB Data Signal Plus – USB data signal from/to digital engine. Series resistor required. Internal switched 1.5 K Ω pull-up resistor to 3.3 V required.			
USB_5V_IN	USB 5V Supply Input – Used for external powering of USB interface from USB bus. Also used to detect external USB connection. Rising edge to generate an interrupt capable of waking the microcontroller from power-down mode. Should be bypassed with a 1 µF decoupling capacitor.			

USB_3p3V_OUT

USB 3.3 V Regulated Output Voltage – Regulated voltage derived from the USB supply voltage. Allows the connection of an external 1 µF decoupling capacitor.

3.1.17.1 USB Digital Engine Features

- Full-speed (12 Mbps, default) and low speed (1.5 Mbps) USB serial interface engine and transceiver
- Support for control, bulk and interrupt transfers only (no isochronous)
- Maximum of two endpoints of up to 64 bytes each for data transfer in interrupt or bulk transfer mode, in addition to the control endpoint 0 for configuration purposes
- Three USB related interrupts
 - USB connection detected (to allow software to lock out analog measurement functions during USB operation)
 - USB resume from suspend interrupt
 - USB communications interrupt
- Transfer of data from USB peripheral to MCU using block mode

3.1.17.2 USB Transceiver (PHY) Features

- Closed loop slew rate control as per USB standard
- On-chip series matching and pull-up resistors for speed identification
- Integrated 48 MHz PLL using 32.768 KHz XTAL as a clock source
- On-chip power management including 3.3 V regulator
- Ability to power digital peripherals based on USB power

Owing to the large amount of protocol-level detail involved in USB implementation, details on USB programming use model and register map are provided in separate documents references [2] and [3].

3.1.17.3 USB Register Map

USB peripheral address space is mapped starting at base address of 0x50011340. The USB register addressing is summarized in Table 6.23. Details regarding usage of the USB port are covered in a separate document. Please contact Indie Semiconductor for an example USB firmware driver.

Table 3.23 USB Registers					
Address	Description				
0x50011340 - 0x5001173F	USB end-point buffer memory				
0x50011340	OUT_7_BASE				
0x50011380	IN 7 BASE				
0x500113C0	OUT_6_BASE				

Ta	able 3.23 USB Registers
Address	Description
0x50011400	IN 6 BASE
0x50011440	OUT_5_BASE
0x50011480	IN 5 BASE
0x500114C0	OUT_4_BASE
0x50011500	IN_4_BASE
0x50011540	OUT_3_BASE
0x50011580	IN_3_BASE
0x500115C0	OUT_2_BASE
0x50011600	IN_2_BASE
0x50011640	OUT 1 BASE
0x50011680	IN 1 BASE
0x500116C0	OUT 0 BASE
0x50011700	IN 0 BASE
0x50011740 - 0x5001174F	USB DMA Registers
0x50011740	DMABUFADDR0 ID
0x50011741	DMABUFADDR1 ID
0x50011742	DMARAMADDR0 ID
0x50011743	DMARAMADDR1 ID
0x50011744	DMARAMADDR2 ID
0x50011745	DMARAMADDR3 ID
0x50011746	DMALEN ID
0x50011747	DMACTRL ID
0x50011748	DMALEN LSB ID
0x50011749	DMALEN MSB ID
0x50011750 - 0x5001175F	Reserved
0x50011760 - 0x5001176F	USB OUT/IN Data I/D
0x50011760	OUT8DATA ID
0x50011761	OUT9DATA ID
0x50011762	OUT10DATA ID
0x50011763	OUT11DATA ID
0x50011764	OUT12DATA ID
0x50011765	OUT13DATA ID
0x50011766	OUT14DATA ID
0x50011767	OUT15DATA ID
0x50011768	IN8DATA ID
0x50011769	IN9DATA ID
0x5001176A	IN10DATA ID
0x5001176B	IN11DATA ID
0x5001176C	IN12DATA ID
0x5001176D	IN13DATA ID
0x5001176E	IN14DATA ID
0x5001176F	IN15DATA ID
0x50011770 - 0x5001177F	USB OUT/IN BCL I/D
0x50011770	OUT8BCH ID
0x50011771	OUT8BCL ID

Table 3.23 USB Registers					
Address	Description				
0x50011772	OUT9BCH_ID				
0x50011773	OUT9BCL_ID				
0x50011774	OUT10BCH_ID				
0x50011775	OUT10BCL ID				
0x50011776	OUT11BCH_ID				
0x50011777	OUT11BCL ID				
0x50011778	OUT12BCH ID				
0x50011779	OUT12BCL ID				
0x5001177A	OUT13BCH ID				
0x5001177B	OUT13BCL ID				
0x5001177C	OUT14BCH ID				
0x5001177D	OUT14BCL ID				
0x5001177E	OUT15BCH ID				
0x5001177F	OUT15BCL ID				
0x50011780 - 0x5001178F	USB OUT/IN Address				
0x50011780	Reserved				
0x50011781	BOUT1ADDR ID				
0x50011782	BOUT2ADDR ID				
0x50011783	BOUT3ADDR ID				
0x50011784	BOUT4ADDR ID				
0x50011785	BOUTSADDR ID				
0x50011786	BOUTGADDR ID				
0x50011787	BOUTTADDR ID				
0x50011788	BINSTADDR ID				
0x50011789	BINIADDR ID				
0x50011783	BIN2ADDR ID				
0×50011788	BINZADDR ID				
0x50011780	BINADDR ID				
0×50011780					
0×50011785	BINGADDR ID				
0x50011785	BIN7ADDR ID				
0×50011780	CIRCATE				
0x50011790	Peserved				
0x50011731 0x5001173F	IISP. Interrupta				
0x500117A0 - 0x500117AF	ISOERD ID				
0x500117A0	ISOERK_ID				
0x500117A1	ISOCIL_ID				
0x500117A2					
0x50011789					
0x50011720	IVEC_ID				
0					
	UUTU/IRQ_ID				
UX5UU11/AB	OSRIKÕTD				
UX5UU11/AC	INU/IEN_ID				
UX5UU11/AD	OUTU/IEN_ID				
0x500117AE	USBIEN_ID				

Table 3.23 USB Registers							
Address	Description						
0x500117AF	USBBAV ID						
0x500117B0 - 0x500117BF	USB Special Function Register						
0x500117B0 - 0x500117B3	Reserved						
0x500117B4	EPOCS_ID						
0x500117B5	IN0BC_ID						
0x500117B6	IN1CS_ID						
0x500117B7	IN1BC_ID						
0x500117B8	IN2CS ID						
0x500117B9	IN2BC ID						
0x500117BA	IN3CS ID						
0x500117BB	IN3BC ID						
0x500117BC	IN4CS ID						
0x500117BD	IN4BC ID						
0x500117BE	IN5CS ID						
0x500117BF	IN5BC ID						
0x500117C0	IN6CS ID						
0x500117C1	IN6BC ID						
0x500117C2	IN7CS ID						
0x500117C3	IN7BC ID						
0x500117C4	Reserved						
0x500117C5	OUTOBC ID						
0x500117C6	OUT1CS ID						
0x500117C7	OUT1BC ID						
0x500117C8	OUT2CS ID						
0x500117C9	OUT2BC ID						
0x500117CA	OUT3CS ID						
0x500117CB	OUT3BC ID						
0x500117CC	OUT4CS ID						
0x500117CD	OUT4BC ID						
0x500117CE	OUT5CS ID						
0x500117CF	OUT5BC ID						
0x500117D0	OUT6CS ID						
0x500117D1	OUT6BC ID						
0x5001172	OUT7CS ID						
0x50011703	OUT78C ID						
$0 \times 50011704 = 0 \times 50011705$	Reserved						
0x50011706							
0x50011707	TOGCTL ID						
0x500117D8	USBERMI. TD						
0x50011709	USBERMH TD						
0x500117Da	Reserved						
0x50011708	TU DU TU NESETVEN						
0x50011700	Perceyved						
0x50011700							
0x50011700	TNO77AL TD						
UAJUUII/DE	INU/VAL_ID						

Table 3.23 USB Registers							
Address	Description						
0x500117DF	OUT07VAL ID						
0x500117E0	INISOVAL_ID						
0x500117E1	OUTISOVAL ID						
0x500117E2	ISOSTADDR_ID						
0x500117E3	ISOSIZE_ID						
0x500117E4 - 0x500117E7	Reserved						
0x500117E8	SETUPBUF0_ID						
0x500117E9	SETUPBUF1_ID						
0x500117EA	SETUPBUF2_ID						
0x500117EB	SETUPBUF3 ID						
0x500117EC	SETUPBUF4_ID						
0x500117ED	SETUPBUF5_ID						
0x500117EE	SETUPBUF6_ID						
0x500117EF	SETUPBUF7_ID						
0x500117F0	OUT8ADDR_ID						
0x500117F1	OUT9ADDR_ID						
0x500117F2	OUT10ADDR_ID						
0x500117F3	OUT11ADDR_ID						
0x500117F4	OUT12ADDR_ID						
0x500117F5	OUT13ADDR_ID						
0x500117F6	OUT14ADDR_ID						
0x500117F7	OUT15ADDR_ID						
0x500117F8	IN8ADDR_ID						
0x500117F9	IN9ADDR ID						
0x500117FA	IN10ADDR_ID						
0x500117FB	IN11ADDR_ID						
0x500117FC	IN12ADDR_ID						
0x500117FD	IN13ADDR_ID						
0x500117FE	IN14ADDR_ID						
0x500117FF	IN15ADDR_ID						
0x50011800	USBCONFIG: USB top-level configuration register						

3.1.18 Pulse Width Modulator

The device includes a PWM. The main characteristics are:

- Twelve bit resolution Both period and pulse width.
- Independent pre-scaler
- Programmable active level.

The pulse width modulator can be assigned to any pin in GPIO port C. The PWM_EN bit must be set in the PWMCTRL register. For minimal standby current, pull-up for PWM output pin defaulting to a low state should be disabled while in the standby state.

Table 3.24 PWM Signal						
Pin Name	Description					
PCx	Pulse Width Modulated Output – Pulse width modulated output signal from the digital engine to an external device. Default: GPIOC7. For minimal standby current, pull-up for PWM output pin defaulting to a low state should be disabled while in the standby state.					

3.1.18.1 PWM Usage Description

The PWM circuit generates a wide-range, high-resolution modulated output. It has a total of 4 data and configuration registers to communicate with the microcontroller.

The waveform is controlled by 12-bit period word (PWMPER and PWMEXT) and 12-bit pulse width word (PWMPW and PWMEXT) that are used to determine the output waveform.

The entire waveform can be scaled by adjusting the Prescaler value in PWM2CTRL. The Prescaler can be set to one of eight different settings shown in Table 3.8.1.1.

Table 3.25 PWM Prescaler Divider Values							
PWM_PWC	Divide Value (f_{xo}/f_{PWM})						
000	1						
001	2						
010	4						
011	8						
100	32						
101	256						
110	8,192						
111	262.144						

The output period is calculated as follows:

$$Period = \frac{1 + PWMPER \times DIVIDE_VALUE}{SystemClock}$$

The PWM pulse width is calculated as follows:

$$Pulse_Width = \frac{1 + PWMPW \times DIVIDE_VALUE}{SystemClock}$$

To control the active level of the PWM, control bit PWM_INV is used. If this bit is set to one, the PWM output is low level during the pulse and one at other times, including if the PWM is disabled by the user.

Alternatively, if PWM_INV is set to zero, then the PWM outputs a high level during the pulse.

3.1.18.2 PWM Registers

The following registers are used to control the PWM:

Table 3.26 PWM Registers								
Address	Register Name	Description	Reset Value					
0x500180C0	PWM_CTRL	PWM control	0x00					
0x500180C1	PWM_PER	PWM period	0x00					
0x500180C2	PWM_PW	PWM pulse width	0x00					
0x500180C3	PWM_EXT	PWM period and pulse width	0x00					

PWM Control Register									
PWM_CTRI	L	0x500180C0				0x00			
R/W	Reserved	Reserved	R/W	Reserved	R/W	R/W	R/W		
PWM_EN	-	-	PWM_INV	-	PRESC2	PRESC1	PRESC0		
MSB							LSB		
Bit7	PWM_EN: PWM ena	ble bit							
	0 = PWM2 disabl	.ed							
	1 = PWM2 enable	d							
Bit4	PWM_INV: PWM ou	tput signal p	olarity						
	0 = Receive Nor	rmal logic							
	1 = Inverted lo	gic (active l	OW)						
Bit2-0	PRESC[2:0]: PWM	I's Prescaler							
	000 = System Cl	.ock/1							
	001 = System Cl	.ock/2							
	010 = System Cl	.ock/4							
	011 = System Cl	.ock/8							
	100 = System Cl	100 = System Clock/32							
	101 = System Cl	= System Clock/256							
	110 = System Clock/8192								
	111 = System Cl	.ock/262144 (2	18)						

PWM Period Low Byte Register									
PWM_PER		0x500180C1			0x00				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
PWM_PER7	PWM_PER6	PWM_PER5	PWM_PER4	PWM_PER3	PWM_PER2	PWM_PER1	PWM_PER0		
MSB							LSB		
Bit7-0 PI	WM_PER[7:0]:	PWM period	low register						

PWM Pulse	Width Low By	te Register					
PWM_PW 0x5			0x500180C2	500180C2 0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PWM_PW7	PWM_PW6	PWM_PW5	PWM_PW4	PWM_PW3	PWM_PW2	PWM_PW1	PWM_PW0
MSB							LSB

Bit7-0 PWM_PW[7:0]: PWM pulse width low register

PWM extension with high nibble of period and pulse width										
PWM EXT		0x500180C3				0x00				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
PWM_PER11	PWM_PER10	PWM_PER9	PWM_PER8	PWM_PW11	PWM_PW10	PWM_PW9	PWM_PW8			
MSB							LSB			
Bit7-4 PWN	Bit7-4 PWM PER[11:8]: PWM period high nibble									
Bit3-0 PWM_PW[11:8]: PWM pulse width high nibble										

3.1.19 Internal Interface Bus

All peripherals are mapped into the unified 32-bit address space in the ARM Cortex.

The M0 Core's internal interface bus supports high speed interfacing with the analog engine and those digital interface functions not resident in the M0 Core.

A block transfer mode is provided to reduce the overhead for data-intensive peripherals such as USB (see Section 3.1.19.1 Block Transfer Mode).

3.1.19.1 Block Transfer Mode

Individual data transfers to certain peripherals have a large accessing overhead due to internal serialization and addressing overhead. If working with large chunks of data in the peripheral space, it is significantly more efficient to have the microcontroller working with the data in SRAM. For instance, if computing a checksum for a received transmission, the recommended sequence is to transfer the data to SRAM first and then compute the checksum from the transferred block. To assist with the transferring of data, a background transfer peripheral has been implemented which allows background data transfers between the MCU and the peripheral to occur with only high level microcontroller interaction. Using this mechanism, the microcontroller can initiate a block transfer between peripheral and SRAM and then go on to other tasks while the data is being transferred. In addition to letting the programmer optimize the code to perform other tasks while the transfer is occurring, the transfer itself completes in less cycles since the addressing overhead is substantially reduced in block transfers. The limitations of using block transfer mode are as follows:

- Communication using block mode must be between the SRAM and a peripheral in the address space from 0x5001000 to 0x5001FFFF.
- Source and destination address blocks must be word-aligned. Only transfers of an integer number of 32-bit words are supported.
- The peripheral address can either be a block or a single address used repeatedly. The latter option is used to support FIFO and queue peripheral interface types.
- The serial bandwidth to the ASIC peripherals is shared between the block transfer peripheral and memory accesses from program code. So if a background block transfer is in progress while the program attempts to access a serialized peripheral, either the block transfer of the program code must stall until the other is finished. The priority can be set by a configuration bit.

The programming use model for block transfer is as follows

MCU program configures:

- base address in SRAM
- base address in peripheral memory space
- number of words to be transferred
- whether to increment peripheral address (or access same address repeatedly). The SRAM address always increments.
- data direction, either SRAM to peripheral or peripheral to SRAM

MCU then writes a start indication to initiate the transfer.

During the block transfer, the serial bus is used by the block transfer according to the following rules: If both program code and block transfer request use of the bus, any transfer already in progress will continue until the transfer completes or the next word boundary is reached (if the transfer in progress is a block transfer). Then if the BLOCKING bit is set then the bus will be allocated to the block transfer and the program code will stall. If the BLOCKING bit is not set, then the block transfer will stall until the program code's transfer is complete.

3.1.19.2 Block Transfer Mode Registers

Block Transfer Base Peripheral Address									
BXADD		0x50000080			0x0000				
W	W	W	W	W	W	W	W		
BXADD7	BXADD6	BXADD5	BXADD4	BXADD3	BXADD2	BXADD1	BXADD0		
BXADD15	BXADD14	BXADD13	BXADD12	BXADD11	BXADD10	BXADD9	BXADD8		
MSB							LSB		
Bit15-0 BXAD	DD[15:0] This	register con	trols the sta	arting addres	s in the peri	pheral spac	e for the		
transfer. I	Legitimate ad	dresses for p	eripheral sid	de of the tra	nsfer are 0x5	001xxxx. W	rite this		
register with the lower 16 bits of the desired address. Only word-aligned addresses should be									
written to t	chis register	or else unde	fined behavio	or may result	•				

Block Transfer Number of Words									
BXNUM 0x5000		0x5000082	5000082			0x00			
W	W	W	W	W	W	W	W		
BXNUM7	BXNUM6	BXNUM5	BXNUM4	BXNUM3	BXNUM2	BXNUM1	BXNUM0		
MSB							LSB		
Bit7-0 BXNUM[7:0] This register controls the size of the block to be transferred. Load this									
register with one less than the number of 32-bit words to transfer. For instance, to transfer									
32 words then set BXNUM to a value of 31.									

Block Transfer Configuration								
BXCONF 0x5000083				0x00				
W	W	W	W	W	W	W	W	

Indie

Preliminary Datasheet iND86201 "Ernie"

Reserved	Reserved	Reserved	Reserved	START	BLOCKING	W1R0	INCRADDR				
MSB							LSB				
Bit7-4 H	Bit7-4 Reserved										
Bit3 S	Bit3 START Set this bit to initiate the currently configured block transfer. The bit										
automatio	automatically clears once the transfer completes.										
Bit2 H	BLOCKING - Config	ures priority	of block tran	sfer vs. p	rogram code						
1	l = Stall program	code in case	of conflict								
() = Stall block t	ransfer in cas	e of conflict								
Bitl W	W1R0										
1	l = Transfer is f	rom SRAM to pe	ripheral								
() = Transfer is f	rom peripheral	to SRAM								
Bit0 I	INCRADDR										
1	l = Increment per	ipheral addres	s automatical	ly							
() = Repeatedly ac	cess same peri	pheral addres	S							

SRAM Start Address Register								
BXSRAMADDR		0x50000084			0x0000			
W	W	W	W	W	W	W	W	
BXSRAM7	BXSRAM6	BXSRAM5	BXSRAM4	BXSRAM3	BXSRAM2	BXSRAM1	BXSRAM0	
BXSRAM15	BXSRAM14	BXSRAM13	BXSRAM12	BXSRAM11	BXSRAM10	BXSRAM9	BXSRAM8	
MSB							LSB	
Bit15-0 EXS	RAM[15:0] Thi	s register co	onfigures the	starting add	lress of the	SRAM block t	to be used	
during the	transfer. Va	lid SRAM addı	resses are in	the form 0x2	000xxxx. W	rite this re	egister	
with the lower 16 bits of the desired address. Only word-aligned addresses should be written to								
this registe	er or else un	defined behav	vior may resu	lt.				

3.2 ANALOG FUNCTIONS

The circuitry of the analog engine (also referred to as "Ernie" hereinafter) provides the measurement interface to the sensor, to the thermistor(s) used for ambient temperature sensing. It contains digital-to-analog converters used to trim the sensor drive voltages. It contains transimpedance amplifiers used to apply drive voltages to the sensor and convert sensor currents to voltage for input to the analog-to-digital converter (ADC). There is analog switching to direct drive voltage to and sense current from the appropriate sensor contacts. It contains an ADC with multiplexed differential input to accept voltage input for measurement from one of two transimpedance amplifiers and produce a 17-bit 2's complement result. The bipolar ADC input allows detection of and software compensation for small negative inputs. It contains a precision voltage reference. It contains an analog charge pump and voltage regulation to support analog engine operation over the specified supply/battery voltage range. There is low-battery monitoring capability with reset generation following loss of battery voltage.

3.2.1 Sensor Configurations

Two types of sensor configurations are supported as described below:

3.2.1.1 SG-referenced configuration

In an SG-referenced configuration, the electrochemical sensor is driven with the DAC voltage relative to an independent voltage, referred to herein as SG. This SG voltage is generated by a 10-bit trim DAC using the same reference as in Section 3.2.3). The output stage of this DAC is able to sink or source currents much larger than the expected sensor currents so that the SG voltage is well regulated.

The target voltage for SG is recommended to be 1.1 V. The associated 10-bit trim DAC code is established during manufacturing calibration of a meter, with the codes retained in non-volatile eFlash memory.

In many systems, the electrochemical sensor only sees the voltage difference between the Source DAC driving the transimpedance amplifier and the SG voltage across its terminals, so efficient calibration can simply measure the SG voltage and then find the Source DAC code word that produces the desired (SG voltage + target drive voltage) at the DAC output. This saves the calibration step of having to find an unnecessarily precise SG voltage first.

3.2.1.2 Ground-referenced configuration

In a ground-referenced configuration, the electrochemical sensor is driven with the DAC voltage relative to the common analog ground on the PCB. For most types of chemistries, this configuration prevents any transimpedance amplifier output from exceeding the battery voltage. However, since ground is typically a common PCB net, this configuration may be more susceptible to noise coupling from other sources. In addition, if sensor current must pass through a switch before flowing to ground, the resistance of the switch must be taken into account more precisely since feedback cannot be used to regulate the ground voltage independent of the current.

3.2.2 Analog Sensor Interface and Switching

The analog engine contains analog switches that allow selective connection of the transimpedance amplifiers, analog common voltage SG, and ground to sensor contacts, a reference resistor, and one thermistor. It is also possible to electrically isolate sensor contacts, the reference resistor, and the thermistors. When a sensor contact is electrically isolated, the leakage current is minimized using a high-isolation transmission gate based design.

A current sensing switch in the pair sees only amplifier input leakage current and allows accurate control of the pin voltage. The amplifier need only provide additional output voltage swing to accommodate the voltage drop across the switch sourcing the load current to the pin.

Switches for selecting alternate gains have an on-resistance that is low in comparison to associated external gain resistors. Switch impedance remains stable so that any impact of switch impedance can be calibrated out of the end application.

Separate double-pole switches are provided for each supported amplifier pin combination. Additional switches allow the feedback loops to be closed when no pin is being driven. The approach is similar for both the transimpedance amplifiers and the SG buffer amplifier.

A detailed connection diagram is shown in Figure 19 for the ground-referenced configuration. Please contact Indie Semiconductor with a sensor pin definition for a recommendation on how to assign and use the analog switch matrix. **NOTE: Pins SG, GHH, GH, C, F, TH2, HM, HH, H, J, D, G, B are available in BGA package only**.

Figure 19: Switch matrix shown with external components for ground-referenced sensor

3.2.2.1 Analog Interface Pins

3.2.2.1.1 Sensor Interface Pins

	Table 3.27 Sensor interface							
Pin Name	Description							
A	A Sensor Contact – Can be electrically isolated, connected to the transimpedance amplifier G voltage output/current input, or connected to system ground GND. This pin is ESD hardened.							
С	C Sensor Contact – Can be electrically isolated, connected to the transimpedance amplifier G voltage output/current input, or connected to the analog common voltage SG. NOTE: Available in BGA package only. This pin is ESD hardened.							
E	E Sensor Contact – Can be electrically isolated, connected to the transimpedance amplifier A voltage output/current input, connected to the analog common voltage SG, or connected to system ground GND. This pin is ESD hardened.							
н	H Sensor Contact – Can be electrically isolated, connected to the transimpedance amplifier A voltage output/current input, or connected to system ground GND. NOTE: Available in BGA package only.							
В	B Sensor Contact – Can be electrically isolated or connected to the analog common voltage SG. NOTE: Available in BGA package only.							
D	D Sensor Contact – Can be electrically isolated or connected to the analog common voltage SG. NOTE: Available in BGA package only.							
F	F Sensor Contact – Can be electrically isolated or connected to the analog common voltage SG. NOTE: Available in BGA package only.							
G	G Sensor Contact – Can be electrically isolated or connected to the transimpedance amplifier A voltage output/current input. NOTE: Available in BGA package only. This pin is ESD hardened.							
J	J Sensor Contact – Can be electrically isolated or connected to the transimpedance amplifier A voltage output/current input. NOTE: Available in BGA package only.							

3.2.2.1.2 Gain Setting Resistor Pins

Transimpedance amplifier gains, and therefore input current ranges, are established by external gain setting resistors.

The gain of transimpedance amplifier G is controlled using resistors connected between pin GO and pins GM, GH, and GHH. Maximum gain, and therefore minimum input current range, is determined by the fixed resistance between pins GO and GM. Switched resistors connected between GO and GH and between GO and GHH allow the feedback resistance to be lower and a higher current input range achieved. Refer to Figure 4 below for typical external component values.

The gain of transimpedance amplifier A is controlled using resistors connected between pin AO and pins AM, HH, and HM. Maximum gain, and therefore minimum input current range, is determined by the fixed resistance between pins AO and AM. Switched resistors connected between AO and HH and between AO and HM allow the feedback resistance to be lower and a higher current input range achieved.

Section 3.2.2.2.3 (SX Control Register, SXCTR) describes the control for switches used to control the gain setting registers.

Table 3.28 Gain Setting Pins						
Pin Name	Description					
GO	Transimpedance Amplifier G Output – Analog engine I/O pin used as common connection for gain setting resistors. Referred to as GO for the single-sensor meter. Is electrically isolated when analog engine is disabled.					
GM	Transimpedance Amplifier G Feedback GM – Analog engine I/O pin used for connection of fixed gain setting resistor GM. Referred to as GM for the single-sensor meter. Is electrically isolated when analog engine is disabled.					
GH	Transimpedance Amplifier G Feedback GH – Analog engine I/O pin used for connection of switched gain setting resistor GH. Referred to as GH for the single-sensor meter. Is electrically isolated when analog engine is disabled. NOTE: Available in BGA package only.					
GHH	Transimpedance Amplifier G Feedback GHH – Analog engine I/O pin used for connection of switched gain setting resistor GHH. Is electrically isolated when analog engine is disabled. NOTE: Available in BGA package only.					
AO	Transimpedance Amplifier A Output – Analog engine I/O pin used as common connection for gain setting resistors of the single-sensor meter. For single-sensor meter, is electrically isolated when analog engine is disabled, including the power-down state					
AM	Transimpedance Amplifier A Feedback AM – Analog engine I/O pin used for connection of fixed gain setting resistor AM of the single-sensor meter. Is electrically isolated when analog engine is disabled, including the power-down state.					
НМ	Transimpedance Amplifier A Feedback HM – Analog engine I/O pin used for connection of switched gain setting resistor HM of the single-sensor meter. Is electrically isolated when analog engine is disabled, including the power-down state. NOTE: Available in BGA package only.					
НН	Transimpedance Amplifier A Feedback HH – Analog engine I/O pin used for connection of switched gain setting resistor HH of the single-sensor meter. Is electrically isolated when analog engine is disabled, including the power-down state. NOTE: Available in BGA package only.					

3.2.2.1.3 Reference Resistor and Thermistor Pins

Table 3.29 Reference resistor and Thermistor Interface							
Pin Name	Description						
RR	Reference Resistor – Analog engine I/O pin used to apply voltage to and read current drawn by external reference resistor. Can be electrically isolated, connected to the transimpedance amplifier G voltage output/current input, or connected to the transimpedance amplifier A voltage output/current input.						

TH1	Thermistor 1 – Analog engine I/O pin used to apply voltage to and read current drawn by external thermistor 1. Can be electrically isolated or connected to the transimpedance amplifier G voltage output/current input.
TH2	TH2 Sensor Contact – Can be electrically isolated or connected to system ground, GND NOTE: Available in BGA package only.

3.2.2.1.4 Analog Voltage Reference Pins

	Table 3.30 Analog Voltage Reference Pins						
Pin Name	Description						
SG	Analog Common Voltage – SG reference voltage for connection to an external 10 nF filter capacitor referenced to ground. In an SG-referenced system, this establishes the analog common voltage for the DACs and most sensor measurements. Value can be trimmed, recommended to be 1.1 V.						
ADC_REF	ADC Reference Voltage Output – SDADC reference voltage output for connection to an external 1 µF decoupling capacitor referenced to ground.						

3.2.2.2 Analog Switch Interface Registers

These registers control the analog switches used to connect the transimpedance amplifiers to sensor contacts and address the multiplexer used to select transimpedance amplifier be measured with the ADC. These can be accessed as individual bytes or the four bytes, which are aligned on a word boundary, can be accessed simultaneously as a 32-bit word (0x5000005C - 0x5000005F).

3.2.2.2.1 SG Control Register, SGCTR

This register controls connection of sensor interface pins to transimpedance amplifier G or SG/REF_1.21. The register is cleared following reset, including that associated with the power-down condition. A bit is set to enable connection of a sensor contact for voltage drive and current measurement.

SG Control Register								
SGCTR		0x50000044			0x00	0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
SG7	SG6	SG5	SG4	SG3	SG2	SG1	SG0	
MSB							LSB	
Bit7	SG7: (Reserve	d)						
Bit6	SG6: Switch G	6 control						
	0 = C sensor	contact isola	ated					
	1 = C sensor	contact conne	ected to trai	nsimpedanc	e amplifier	G		
Bit5	SG5: Switch G	5 control						
	0 = F sensor	contact isola	ated					
	1 = F sensor	contact conne	ected to SG	(1.21V)				
Bit4	SG4: Switch G	4 control						
	0 = E sensor	contact isola	ated					
	1 = E sensor	contact conne	ected to SG	(1.21V)				
Bit3	SG3: Switch G	3 control						
	0 = D sensor	contact isola	ated					
	1 = D sensor	contact conne	ected to SG	(1.21V)				
Bit2	SG2: Switch G	2 control						
	0 = C sensor	contact isola	ated					

Indie

1 = C sensor contact connected to SG (1.21V)
Bit1 SG1: Switch G1 control
0 = B sensor contact isolated
1 = B sensor contact connected to SG (1.21V)
Bit0 SG0: Switch G0 control
0 = A sensor contact isolated
1 = A sensor contact connected to transimpedance amplifier G

3.2.2.2.2 SA Control Register, SACTR

This register controls connection of sensor interface pins to transimpedance amplifier A or GND. The register is cleared following reset, including that associated with the power-down condition. A bit is set to enable connection of a sensor contact for voltage drive and current measurement.

SA Control Register								
SACTR			0x50000045			0x00		
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W
SA7		SA6	SA5	SA4	SA3	SA2	SA1	SAO
MSB								LSB
Bit7	SA7	: Switch A7	control					
	0 =	J sensor co	ntact isolat	ed				
	1 =	J sensor co	ntact connec	ted to trans	impedance am	plifier A		
Bit6	SA6	: Switch A6	control					
	0 =	G sensor co	ntact isolat	ed				
	1 =	G sensor co	ntact connec	ted to trans	impedance am	plifier A		
Bit5	SA5	: Switch A5	control					
	0 =	H sensor co	ntact isolat	ed				
	1 =	H sensor co	ntact connec	ted to trans	impedance am	plifier A		
Bit4	SA4	: Switch A4	control					
	0 =	E sensor co	ntact isolat	ed				
	1 =	E sensor co	ntact connec	ted to trans	impedance am	plifier A		
Bit3	SA3	: Reserved						
Bit2	SA2	: Switch A2	control					
	0 =	H sensor co	ntact isolat	ed				
	1 =	H sensor co	ntact connec	ted to GND				
Bit1	SA1	: Switch Al	control					
	0 =	E sensor co	ntact isolat	ed				
	1 =	E sensor co	ntact connec	ted to GND				
Bit0	SA0	: Switch A0	control					
	0 =	A sensor co	ntact isolat	ed				
	1 =	A sensor co	ntact connec	ted to GND				

3.2.2.2.3 SX Control Register, SXCTR

This register controls connection of gain setting resistor pins to transimpedance amplifier A and G, the connection of reference resistor RR or thermistors TH1 and TH2 to transimpedance amplifier G, and the connection of reference resistor RR to a transimpedance amplifier A. The register is cleared following reset, including that associated with the power-down condition. A bit is set to reference resistor and thermistor connections to enable connection of a device for voltage drive and current measurement. Multiple gain setting bits may be activated at a time.

SX Con	trol F	Register							
SXCTR			0x50000046			0x00	0x00		
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
SX7		SX6	SX5	SX4	SX3	SX2	SX1	SX0	
MSB								LSB	
Bit7	SX7:	: Switch A7 co	ontrol						
	0 =	TH1 thermisto	or pin isola	ted					
	1 =	TH1 thermisto	or pin conne	cted to th	cansimpedance	e amplifier (5		
Bit6	SX6:	: Switch X6 co	ontrol						
	0 =	TH2 thermisto	or pin isola	ted					
	1 =	TH2 thermisto	or pin conne	cted to GN	1D				
	Wher	n SX6 = 1, fin	rmware must	ensure tha	at one of SGO), SG6, SX5 c	or SX7 is al	so set to 1	
	simu	ultaneously to	o complete t	he current	path throug	gh the exterr	al circuit,	and prevent	
	ampl	lifier G from	railing out	•					
Bit5	SX5:	: Switch X5 co	ontrol						
	0 =	RR reference	resistor pi	n isolated	1				
	1 =	RR reference	resistor pi	n connecte	ed to transin	npedance ampl	ifier G		
Bit4	SX4:	Switch X4 co	ontrol						
	0 =	RR reference	resistor pi	n isolated	1				
	1 =	RR reference	resistor pi	n connecte	ed to transin	npedance ampl	ifier A		
Bit3	SX3:	: Switch SX3 d	control						
	0 =	GH gain resis	stor pin iso	lated					
	1 =	GH gain resis	stor pin con	nected to	transimpedar	nce amplifier	G		
Bit2	SX2:	Switch X2 co	ontrol						
	0 =	GHH gain resi	istor pin is	olated					
	1 =	GHH gain resi	istor pin co	nnected to	o transimpeda	ance amplifie	er G		
Bit1	SX1:	: Switch X1 co	ontrol						
	0 =	HM gain resis	stor pin iso	lated					
	1 =	HM gain resis	stor pin con	nected to	transimpedar	nce amplifier	A		
Bit0	SX0:	: Switch X0 co	ontrol						

0 = HH gain resistor pin isolated 1 = HH gain resistor pin connected to transimpedance amplifier A

3.2.2.2.4 Data Select Control Register, DSCTR

This register is used to select the ADC multiplexer input channel. The register also contains bits that control 2-to-1 multiplexers that select the source of the reference voltage supplied to transimpedance amplifier G and transimpedance amplifier A. The register bits are cleared following reset.

Data Select Control Register								
DSCTR			0x50000047			0x00		
Reserved	þ	R/W	Reserved	Reserved	Reserved	Reserved	R/W	R/W
SEL_CH[3	3]	SEL_CH[2]	SEL_CH[1]	SEL_CH[0]	-	-	DACINAO	DACINGO
MSB								LSB
Bit7-4	SEL	CH[3:0]: ADC	channel select	control (Er	nie_A5 silic	on)		
	4'b(-)000 = No chan	nel selected ((SD ADC input	is floating)		
	4'b()001 = Transim	pedance amplif	fier G select	ed: Pin GO (positive) v	s. Pin GM	(negative)
	4'b()010 = Transim	pedance amplif	fier A select	ed: Pin AO (positive) v	s. Pin AM	(negative)
	4'b()100 = Pin F (positive) vs.	Pin D (negat:	ive)			
	4′b2	1000 = Auxilia	ry mux output	vs. on-chip	GND (negativ	e)		
	All	other combina	tions = Reserv	ved (should ne	ever be set	by firmware	at any por	int)
Bit3-2	Rese	erved						
Bit 1	DAC	INAO:						
	0 =	DAC selected	as reference i	input for trai	nsimpedance	amplifier A		
	1 =	D sensor cont	act pin select	ed as referen	nce input fo	r transimpe	dance ampli	ifier A
Bit O	DACINGO:							
	0 =	DAC selected	as reference i	input for trai	nsimpedance	amplifier G		
	1 =	F sensor cont	act pin select	ed as referen	nce input fo	r transimpe	dance ampli	ifier G

Figure 20: Sigma Delta ADC Input Channel Multiplexing

3.2.3 Voltage Reference

The analog engine contains a 1.21 V bandgap voltage reference used as the common reference for the DACs, and 17-bit ADC. To maintain a stable sensor drive voltage and long-term current measurement accuracy, the voltage reference exhibits good long-term stability and tight supply voltage, load, and temperature regulation.

The precision reference and reference voltage generator circuitry are placed in a minimum current draw configuration when the analog engine is placed in the power-down state.

3.2.4 SG Reference

The internal voltage reference is used to drive a pin SG for SG-referenced systems. This pin voltage can be trimmed between 1.01 V and 1.20 V using a 10-bit DAC as per application needs. The circuit used is as shown in Figure 21. The reference voltage at the input of this calibration DAC circuit is 1.21 V. Therefore, the output voltage, VSG, can be calculated as follows:

$$V_{SG} = Vref \times \frac{S + \frac{Dbg}{1024}}{S+1} = 1.21 \times \left(\frac{5}{6} + \frac{1}{6} \times \frac{Dbg}{1024}\right)$$

The term S is the ratio R_2 / R_1 and equals 5. The gain, Gr, is 1.0

The term Dbg represents the programmed DAC code.

The nominal trim voltage range is 1.01 V to 1.20 V in 0.2 mV steps.

Figure 21: SG Trim DAC Circuit

3.2.4.1.1 SG Reference Control Registers

SG Reference Control Register									
PRCTR		0x50000	0x50000050-51			0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
PR7	PR6	PR5	PR4	PR3	PR2	PR1	PR0		
-	-	-	-	-	-	PR9	PR8		
MSB							LSB		
Bit15-10	Reserved								
Bit9-0	PR[9:0] Least-significant 8 bits of 10-bit precision reference trim								

3.2.5 Source DACs

To accommodate the various drive voltages required for measurements made of a sensor, the analog engine contains a pair of sub-ranging DACs that are used to program drive voltage. The DAC can generate 0 to 3 V drive relative to ground. In particular, this includes the range (SG - 1 V) to (SG + 1 V) drive, i.e. \pm 1 V relative to SG. This covers both oxidative and reductive reaction chemistries.

An SG-referenced system (as defined in Section 0) avoids operation near the analog supply rails, where unintended shifts in transimpedance amplifier offsets can result more easily. In an SG-referenced system, the source DAC voltage setting during all measurements, including offset measurements, should be limited to the 1 V to 2.5 V range, relative to ground. The DAC setting used during offset readings should match that used during associated sensor, thermistor, and reference measurements, even though the voltage is not applied to a load.

The appropriate DAC settings and resulting voltages are determined when the system is manufactured. They are retained in eFlash memory for the life of the meter. Registers controlling the course and fine adjustments are aligned within a word boundary.

The DACs are placed in a minimum current draw configuration when the analog engine is placed in the power-down state.

3.2.5.1 DAC Output Characteristic

The circuit used for the coarse/fine DACs is as shown in Figure 22. The reference voltage, Vref, at the input of this DAC is 1.21 V and fixed final stage gain, G, is 2.5. The output voltage, DAC_OUT, can be calculated as follows:

$$DAC_OUT = Vref \times G \times \frac{S\frac{Dc}{64} + \frac{Df}{256}}{S+1}$$

The term S is the ratio R_2 / R_1 and equals 31 in this design. The gain, G, is 2.5.

The terms Dc and Df represent the programmed coarse and fine DAC codes respectively.

Coarse DAC step size is nominally 46 mV and fine DAC step size 0.37mV.

Full scale range is nominally 3.0 V.

Figure 22: Sub-ranging (Coarse + Fine) DAC Architecture

In use, the DAC voltage is initially set using the formula above. The fine DAC is then trimmed to reduce error around the target to within 0.37 mV. The resulting codes are then stored in non-volatile memory for use during sensor measurements. The process is completed for each applicable measurement voltage.

3.2.5.2 DAC G Control Registers, DGCTRL and DGCTRH

These 8-bit registers, which can be simultaneously accessed as a 16-bit half-word, control setting and reading the state of the bits of the sub-ranging DAC associated with transimpedance amplifier G. There is an 8-bit fine adjustment (DGCTRL) and a 6-bit course adjustment (DGCTRH). The registers are cleared following reset, including that associated with the power-down condition.

DAC G Control Register L											
DGCTRL		0x50000048			0x00						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
DGF7	DGF6	DGF5	DGF4	DGF3	DGF2	DGF1	DGF0				
MSB							LSB				
Bit7-0 DGF[7:0]: 8-bit fine DAC G setting											

DAC G Control Register H									
DGCTRH		0x50000049			0x00	0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
-	-	DGC5	DGC4	DGC3	DGC2	DGC1	DGC0		
MSB							LSB		
Bits 7-6	Bits 7-6 Reserved								
Bit 5-0	DGC[5:0]:	6-bit course	DAC G setting	ſ					

3.2.5.3 DAC A Control Registers, DACTRL and DACTRH

These 8-bit registers, which can be simultaneously accessed as a 16-bit half-word, control setting and reading the state of the bits of the sub-ranging DAC associated with transimpedance amplifier A. There is an 8-bit fine adjustment (DACTRL) and a 6-bit course adjustment (DACTRH). The registers are cleared following reset, including that associated with the power-down condition.

DAC A Control Register L											
DACTRL		0x500004C			0x00						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
DAF7	DAF6	DAF5	DAF4	DAF3	DAF2	DAF1	DAFO				
MSB							LSB				
Bit7-0 DAF[7:0]: 8-bit fine DAC A setting											

DAC A Control Register H										
DACTRH		0x500004D			0x00					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
-	-	DAC5	DAC4	DAC3	DAC2	DAC1	DACO			
MSB							LSB			
Bits 7-6 R	Bits 7-6 Reserved									
Bits 5-1 D	AC[5:0]: 6-1	oit course DA	AC A setting							

3.2.6 Transimpedance Amplifiers

The analog engine contains two transimpedance amplifiers. Each is used to apply an associated DAC output voltage to a sensor contact and to allow the measurement of current at that contact. Current flow is normally into the sensor contact from the meter. Transimpedance amplifier G is used to interface with one particular set of sensor contacts. Transimpedance amplifier A is used to interface with another set of sensor contacts. Each transimpedance amplifier converts contact current to a voltage, referenced to the DAC's output voltage. The transfer function is established by resistance external to the analog engine. To accommodate different full-scale current ranges with a fixed ADC input voltage range, each transimpedance amplifier is accompanied by analog switching that allows the external feedback resistance to be modified.

Up to three gain settings are supported for each transimpedance amplifier. Use of external resistors provides better long-term gain stability and allows potential adjustment of gain ranges. The impedance of enabled analog switches in series with the external resistors must be low in comparison to the external resistance so as not to significantly impact gain.

Since the transimpedance amplifiers run from the output of the analog boost regulator, they support up to 3.25 V output level over the entire battery voltage range of 2.2 V to 3.3 V

The transimpedance amplifiers are placed in a minimum current draw configuration when the analog engine is placed in the power-down state.

Instead of the DAC, external voltages can be used as reference to the transimpedance amplifiers G and A as shown in the simplified figures below:

Figure 23: External Voltage Reference for Amplifier G

3.2.7 Sigma Delta ADC

A sigma delta analog-to-digital converter (SDADC) with bipolar input producing a 17-bit two's complement result is used to quantify the output of the transimpedance amplifiers. Because there are two transimpedance amplifiers and their output voltages are referenced to DAC voltages that vary, the ADC supports differential input and have a differential input multiplexer.

To assure good signal to noise ratio in the SDADC, the maximum transimpedance amplifier differential voltage is \pm 1.0 V, subject to the condition that each of the two voltage inputs to the ADC is less than 3.25 V. Firmware has the ability to select conversion times (or, equivalently, sampling rate) between approximately 0.25 ms and 32 ms in power of two steps (i.e. 0.25 ms, 0.5 ms, 1 ms, 2 ms, 4 ms, 8 ms, 16 ms, and 32 ms).

In single sample mode, the SDADC presents a single output codeword representing the average value over the preprogrammed conversion time to the firmware.

In stream mode, the SDADC produces a sequence of output codewords, each of which represents the average value over the preprogrammed conversion time to the firmware. The sequence is initiated and terminated under firmware control.

The sampling window is defined as:

$$T_{sampleWindow} = \frac{256 \times 2^{\{SCALE_SEL[2:0]\}}}{F_{SDADC}CLK}$$

There is a fixed one-time latency of 512 ADC clock cycles from the point START_SAMPLE is asserted by firmware before the sample window whose conversion result shall be presented to firmware. In stream mode, this latency only applies to the first sample that is produced.

Therefore, the sampling rate in stream mode is $1/T_{sampleWindow}$

For instance, if the system is configured as follows

- CKSEL[1:0] = 2'b10 (selects the PLL/4 clock)
- PLLMTRM[10:0] = 'd1536 (sets PLL feedback integer divider)
- adc sclk ctr = 1'b1 (sets the SDADC-specific clock divider to divide by 12)

Then the sampling rate shall be $1/T_{sampleWindow} = (32768*1536/4/12)/(256*2^0) = 4096$ samples per second, and the accuracy of this sampling rate will be maximized, as it is now crystal-referenced.

The SDADC output is in 2's-complement 17-bit format. The bipolar SDADC input range allows for an opportunity to measure offsets and correct for them algorithmically, even if they are negative. This avoids the need to inject an artificial offset that may have been injected in previous systems by the use of a fixed resistor in parallel with the sensor.

The SDADC reference of 2.0 V is generated on chip and brought to the pin ADC_REF for off-chip decoupling and measurement. The SDADC reference must be enabled 20 ms before any ADC conversion is initiated, to allow it to settle.

The LSB size of the ADC in volts is given approximately by

$$LSB \ size = \frac{2 \times V_{ADC_REF}}{2^{17} - 1}$$

SEMICONDUCTOR

Measuring and storing the value of the voltage of the ADC reference buffer on ADC_REF pin into eFlash during meter manufacturing allows for a simple method of calibrating the SDADC gain variation. Other methods of optimizing system level accuracy are also possible; please contact Indie Semiconductor for further details.

Conversions are always initiated under digital engine software control. An interrupt is sent to the digital engine when a conversion completes or an error is detected. The interrupt is cleared once the conversion result or error status has been read. A status register also allows the digital engine to poll to determine if the SDADC is conversion has been completed. The digital engine has the ability to terminate an analog-to-digital conversion in progress. Disabling the analog engine will terminate a conversion.

To minimize noise during conversions, the digital engine may be placed into an idle mode by firmware once the conversion is initiated. The SDADC completion interrupt provides a mechanism for resuming program execution.

When not required, software can disable the SDADC circuitry and SDADC reference independently of the remainder of the analog engine circuitry to minimize battery drain between conversions.

3.2.7.1 SDADC Registers

These registers control the SDADC and provide access to the SDADC result. These can be accessed as individual bytes. Four bytes, which are aligned on a word boundary, can also be read simultaneously as a 32-bit word (0x50000020 – 0x50000023).

ADC Data Output										
ADC16_DATA	1	0x50000020	0x50000020-23			0x00				
R	R	R	R	R	R	R	R			
DSBUF7	DSBUF6	DSBUF5	DSBUF4	DSBUF3	DSBUF2	DSBUF1	DSBUF0			
DSBUF15	DSBUF14	DSBUF13	DSBUF12	DSBUF11	DSBUF10	DSBUF9	DSBUF8			
-	-	-	-	-	-	-	DSBUF16			
-	-	-	-	-	-	-	FINISH			
MSB							LSB			
Bit31-25 H	Reserved									
Bit24 FINISH										
(0 = ADC conversion not complete									

3.2.7.1.1 SDADC Output/Status Register


```
1 = ADC conversion complete (an interrupt can be triggered when conversion completes)
Bit23-17 Reserved
Bit16-0 DSBUF[16:0]: ADC output in 17-bit 2's complement format
```

3.2.7.1.2 SDADC Configuration Registers

This register is used to configure operation of the sigma-delta A/D converter and to initiate a conversion.

ADC Conf:	guration Reg	gister						
ADC16_CTH	L	0x50000024	:	0x00				
Reserved	Reserved	Reserved	R/W	R/W	R/W	R/W	R/W	
-	-	-	SCALESEL[2]	SCALESEL[2]	SCALESEL[2]	STREAM	START_SAMPLE	
MSB							LSB	
Bit7-5 H	eserved							
Bit4-2 S	CALE_SEL[2:0)]: ADC inte	gration window	, interval in n	umber of ADC_C	LK cycles		
(000 = 256 100 = 4096							
(001 = 512 101 = 8192							
(10 = 1024	110	= 16384					
(11 = 2048	111	= 32768					
Bit1 S	TREAM:							
(= When STAN	RT_SAMPLE is	asserted, one	ADC output wo	ord is produced			
-	= When STAN	RT_SAMPLE is	asserted, ADC	output words	are produced c	ontinuous	ly until	
START_SAM	IPLE is de-as	sserted by s	oftware (last	conversion in	progress is al	ways comp	leted)	
Bit0 S	TART_SAMPLE:	: 2's-comple	ement sign bit	of ADC result				
T	rite 1 to ir	nitiate ADC	conversion					
7	rite O to st	cop ADC conv	versions after	current one (i	n stream mode)			

ADC Digital Configuration Register											
ADC16_DIGCON	IF	0x50000025			0x00						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
sample_edg	dithEN[1	dithEN[0	chopCtrl[1	chopCtrl[0	chopFreq[2	chopFreq[1	chopFreq[0				
е]]]]]]]				
MSB							LSB				
Bit7-0 Rese	erved for de	vice manufa	cturer use								

ADC Dither 0 Seed Register											
ADC16_DITH0		0x5000028-29			0x567A						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Seed0[7]	Seed0[6]	Seed0[5]	Seed0[4]	Seed0[3]	Seed0[2]	Seed0[1]	Seed0[0]				
Seed0[15]	Seed0[14]	Seed0[13]	Seed0[12]	Seed0[11]	Seed0[10]	Seed0[9]	Seed0[8]				
MSB							LSB				
Bit15-0 Se	ed0[15:0] Dit	ther 0 sequen	ice generator	seed (reserv	ved for devic	e manufactu	rer use)				

ADC Dither 1 Seed Register						
ADC16_DITH1	0x5000002A-2B	0xABCF				

Indie

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W					
Seed1[7]	Seed1[6]	Seed1[5]	Seed1[4]	Seed1[3]	Seed1[2]	Seed1[1]	Seed1[0]					
Seed1[15]	Seed1[14]	Seed1[13]	Seed1[12]	Seed1[11]	Seed1[10]	Seed1[9]	Seed1[8]					
MSB							LSB					
Bit15-0 Se	ed1[15:0] Dit	cher 1 sequen	Bit15-0 Seed1[15:0] Dither 1 sequence generator seed (reserved for device manufacturer use)									

ADC16	Power Managem	ent Register								
ADC16	_PMU		0x5000002C			0x00				
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
adc_e	nadc_overRide	adc_enadc_regBit	adc_reset	adc_dccal	Reserved	adc_enref	adc_enbuf	-		
MSB								LSB		
Bit7	Bit7 adc_enadc_overRide Over-ride digital control of when ADC modulator is enabled									
	0 = Digital state machine enables ADC modulator based on writing start_sample									
	1 = adc_enadc	_regBit in this re	gister contr	cols when AD	C modulato	r is enable	d			
Bit6	adc_enadc_reg	Bit Enable ADC when	n adc_enadc_	overRide in	this regi	ster is enal	bled			
	0 = ADC modul	ator disabled								
	1 = ADC modul	ator enabled								
Bit5	adc_reset ADC	modulator reset -	bit must be	e toggled in	software	to enter an	d exit reset	5		
	0 = ADC modul	ator is not reset								
	1 = ADC modul	ator is reset (sho	rts all feed	lback integr	ation capa	citors insi	de modulator	_)		
Bit4	adc_dccal ADC	DC calibration mo	de: input is	disconnect	ed from pi	ns and shor	ted to grour	nd		
	0 = Input is	connected to pins								
	1 = Input is	disconnected from p	pins and sho	orted to gro	und					
Bit3	Reserved									
Bit2	adc_enref ADC	reference enable								
	0 = ADC refer	ence disabled								
	1 = ADC refer	ence enabled (wait	20 ms for a	analog buffe	r driving	ADC_REF pin	to settle),	,		
	must be d	one before start_s	ample is ass	serted)						
Bit1	1 adc_enbuf ADC input buffer enable									
	0 = ADC input	buffers disabled								
	1 = ADC input	buffers enabled (must be done	e before sta	rt_sample	is asserted)			
Bit0	Reserved									

ADC16 Mis	c/Control 1	frim Register								
ADC16_OVR		0x5000002D			0x9A					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
adc_isel	adc_isel	adc_selex	Reserved	Reserved	Reserved	Reserved	Reserved			
[1]	[0]	t								
MSB	SB LSB									
Bit7-6 a	dc_isel[1:0)] ADC modula	ator current th	rim (power vs.	performance tr	ade-off)				
0	0 = 0.50 * Pr	nom (1.0u)								
0	1 = 0.75 * Pr	nom (1.5u)								
1	0 = 1.00 * Pr	nom (2.0u) (c	lefault)							
1	1 = 1.25*Pr	nom (2.5u)								
Bit5 a	dc_selext H	Bypass input	buffer (manufa	acturer use onl	_y)					
0	= Input bu	uffer in sigr	al path							

1 = Input buffer bypassed
Bit4-0 Reserved

ADC16 Reference Trim Register												
ADC16_REI	F		0x5000002E			0x17						
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W				
adc clk dela		adc_clk_delay	adc_g2x	adc_vbgs	adc_vref[3]	adc_vref	adc_vref	adc_vref[
y[1]		[0]	_	el	_	[2]	[1]	0]				
MSB								LSB				
Bit7-6 adc_clk_delay[7:6] Delay ADC modulator sampling clock relative to ADC digital filter clock												
(reserved for device manufacturer use)												
(00 = No delay (default)											
Bit5 a	adc_g2x Enable double-sampling of ADC input (doubles the ADC modulator gain)											
(0 = Disabled											
	1 = Enabled											
Bit4 a	adc_vbgsel Choose reference generation mechanism for ADC reference buffer											
(0 = Vbg/R current selected as an input (converted to voltage locally by matching R)											
-	1 = Vbg voltage directly selected as an input											
Bit3-0 a	0 adc_vref[3:0] ADC reference voltage trim											
(0000	1.62 V										
(0001	1.67 V										
(0010	1.71 V										
(0011	1.76 V										
(0100	1.82 V										
(0101	1.88 V										
(0110	1.94 V										
(0111 2.00 V (default)											
	1000	2.07 V										
	1001	2.14 V										
:	1010	2.22 V										
	1011	2.31 V										
	1100	2.40 V										
	1101	2.50 V										
	1110	2.61 V										
	1111	2.73 V										

ADC16 Coefficient Trim Register													
ADC16_COEFF		0x5000002F			0xAA								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W						
coeff[7]	coeff[6]	coeff[5]	coeff[4]	coeff[3]	coeff[2]	coeff[1]	coeff[0]						
MSB							LSB						
Bit7-0 coeff[7:0] ADC modulator coefficient trim (reserved for device manufacturer use)													

3.2.8 Auxiliary 8-bit ADC

A port-connected auxiliary 8-bit analog to digital converter is provided for future system expansion. Its main features include:

- 8-bit resolution
- Single ended input
- Conversion rate of up to 80 KSPS
- Configurable reference (VREF = VREFHI VREFLO)
- Choice of band-gap voltage or supply voltage (VSUP_DIG)
- Reference may be scaled in order to provide higher absolute resolution around a smaller input voltage range
- Maximum ADC input range is from 0 V to the supply voltage

It can read from a total of 27 channels (25 GPIOs, a PTAT reference to measure temperature, and the battery voltage after reverse battery protection)

This ADC uses a standard charge redistribution technique, with a single-ended input and internally generated positive and negative reference voltages. The ADC accommodates 27 analog input channels. The user can select which input channel to be sampled by setting the ADCCHANNELS register. The ADC has its own internally generated reference voltages (VREFHI and VREFLO).

There are several steps required for the user to use the ADC. The general sequence is described below:

- 1. Select the input channel to be measured
- 2. Setup the clock system, including the ADC clock divider
- 3. Configure references by programming the ADCREFHI, ADCREFLO, ADCPGN, and ADCREFS bits.
- 4. Start the ADC conversion
- 5. Check the ADC status bit and read the data

The following section will describe each configuration step in detail.

3.2.8.1 Input Channel Selection

GPIOs (PB[7:0], PC[7:0], PD[7:2], and PE[2:0]), the VBAT voltage after supply protection and resistive division by 2, and the PTAT reference voltage are available as inputs to the ADC. Firmware can control which input is connected for the conversion by programming the control bits, ADDCH[5:0], in the ADDCHANNEL register.

3.2.8.2 ADC Clock and Sampling Period

The conversion algorithm has a basic period of 9 cycles (one for sampling, one for each bit). There is a 2-cycle latency from the last bit measurement until the data becomes available to the user. Additionally, there is a single idle cycle to allow biasing before any conversion is initiated when starting from the converter in a disabled state, and another cycle to indicate conversion start. Thus a single conversion will take 9 + 2 + 1 + 1 = 13 cycles. In streaming mode, new samples will arrive every 9 clock cycles.

The converter uses a single clock cycle to sample the input into an input capacitor. When the channel is selected, the source must drive the sample/hold capacitor through the source resistance of the signal to be measured. The sampling time varies with this source resistance. The input to ADC has sufficiently low driving impedance and settling time to settle the input to within 1 LSB of the data conversion during the input sampling stage. An equivalent circuit and related equations are depicted in the Figure 25 below.

Figure 25: 8-bit ADC Input Settling Time

The ADC clock frequency can be programmed through the ADCCLKDIV register. As an example, if ADC clock is derived from a 12 MHz oscillator divided by 16, the input has 1.3 µs to settle. Since the maximum value of the internal sample/hold capacitor, Cs is 10 pF, the maximum source resistance Rs of the signal to be sampled to guarantee 8-bit performance can be calculated as below:

Rs =
$$1.3\mu$$
 / (10p · 5.5) = 23.6 K Ω

If the source impedance is larger, the user can reduce the ADC clock frequency in order to retain the conversion accuracy.

3.2.8.3 ADC Reference Voltage Configuration

The ADC can generate its own reference voltages (VREFHI and VREFLO) from two different sources, its supply voltage (VDD) or an internal bandgap reference voltage (VBG). The ADCREFS bit in the ADCREG3 register selects the source. Once the reference source is selected, the reference voltages can be programmed through the ADCREFHI, ADCREFLO, and ADCPGN bits according to Figure 26.

Figure 26: 8-bit ADC Reference Voltage Equations

Once the reference voltages are established, the ADC data output ADCDT for input voltage VIN can be defined as:

$$ADCDT = floor\left(255 \times \frac{(VIN - VREFLO)}{(VREFHI - VREFLO)}\right)$$

Below are two examples:

1. In a system operating with VDD=3V, there is a signal that moves between 0V and 2.94V. In this case it is recommended that VDD be selected as the reference source and the following setting be made, ADCREFH=15, ADCREFL=0, and ADCPGN=15. This selection would allow for the maximum range of measurement (0V to VDD).

2. In a system operating with VDD=3V and VBG=1.21V, there is a signal that moves between 1.71V and 2.2V. In this case selecting VBG as the reference source and settings of ADCREFH=15, ADCREFL=11, and ADCPGN=8 we can achieve higher resolution. The resolution in this case is:

$$RESOLUTION = \left(\frac{VREFHI - VREFLO}{255}\right) = \left(\frac{\left(\frac{15}{8} \times 1.21\right) - \left(\frac{11}{8} \times 1.21\right)}{255}\right) = \frac{2.27 - 1.66}{255} = 2.38 \, mV$$

Note that in this particular case, the 8-bit ADC effectively generating a digital value with the precision of a 10-bit ADC operating from 0V to VDD.

It is clear from the examples how flexible the ADC can be in a range of applications. The user can devise several schemes to cleverly measure the range of signal of interest and then narrow the reference values to get the optimum resolution if the conversion time is acceptable.

3.2.8.4 ADC Start and Status

Before starting the conversion, the ADC must be enabled and biased. The ADC is enabled by the ADCEN bit in register ADCREG3. The START bit (ADCSTART) starts the conversion process. Once completed the value of the conversion is loaded into the ADCDATA register.

3.2.8.5 Auxiliary 8-bit ADC Registers

The following registers control the behavior of the ADC:

	Table 3.31 Auxiliary 8-bit ADC registers								
Address	Register Name	Description	Reset Value						
0x5000030	ADCCHANNELS	ADC channel select register							
0x50000031	ADCSTART	ADC conversion start							
0x50000032	ADCDATA	ADC data output							
0x50000033	ADCCLKDIV	ADC clock divider							
0x50000034	ADCTRIM0	ADC trim setting	0xF0						
0x50000035	ADCTRIM1	ADC trim setting	0x9F						
0x50000036	ADCTRIM2	ADC trim setting	0x00						

ADC Channel	ADC Channel Select Register								
ADCCHANNELS		0x50000030			0x00				
Reserved Reserved		R/W	R/W	R/W	R/W	R/W	R/W		
-	-	ADCCH5	ADCCH4	ADCCH3	ADCCH2	ADCCH1	ADCCH0		
MSB							LSB		
Bit5-0 ADC	Bit5-0 ADCCH[5:0]: ADC Channel Select								
000	000 - 000111	= Reserved							
001	000 - 001111	= PB0 throug	gh PB7						
010	000 - 010111	= PC0 throug	gh PC7						
011	010 - 011111	= PD2 throug	gh PD7						
100	100000 - 100011 = PE0 through PE2								
101	000 = VBAT/2	(resistive d	divider on	VBAT after	reverse s	upply protecti	Lon)		
101	001 = PTAT (f	or temperatu	ire measur	ement)					

ADC Start Register								
ADCSTART 0x5000031		0x00						
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	R/W	
-	-	-	-	-	-	-	START	
MSB							LSB	
Bit0 STAF	RT: Writing on	e starts the	conversion. R	eading return	s the status	of conversion	; `0'	
means conversion								
Is f	Is finished and `1' means the conversion is ether pending or in progress							

ADC Result Register							
ADCDATA 0x50000032		0x00					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADCDT7	ADCDT6	ADCDT5	ADCDT4	ADCDT3	ADCDT2	ADCDT1	ADCDT0

MSB					LSB
Bit7-0 ADC	DT[7:0]: AD	C Result			

ADC Clock Divider Control Register								
ADCCLKDIV		0x50000033			0x6F	0x6F		
Reserved	R/W	Reserved	Reserved	R/W	R/W	R/W	R/W	
-	-	-	-	-	ADCDIV1	ADCDIV0	ADCCONT	
MSB							LSB	
Bit2-1 ADCI 00 = 01 =	Bit2-1 ADCDIV[1:0]: ADC Clock divider 00 = System Clock/8							
10 = Sys 11 = Sys	10 = System Clock/16 10 = System Clock/32 11 = System Clock/64							
Bit0 ADCC 0 = 1 = Stre	CONT: AD Single aming Mo	C Stream Mod Conversion ode	e					

ADC Trim0 Register								
ADCTRIM0		0x5000034			0xF0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADCREFHI3	ADCREFHI2	ADCREFHI1	ADCREFHI0	ADCREFLO3	ADCREFLO2	ADCREFL01	ADCREFLO0	
MSB							LSB	
Bit7-4 ADCF	Bit7-4 ADCREFHI[3:0]: ADC Reference High Setting							
Bit3-0 ADCF	Bit3-0 ADCREFL0[3:0]: ADC Reference Low Setting							

ADC Tr	ADC Trim1 Register							
ADCTRIM1			0x5000035			0x9F		
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADCSW1		ADCSW0	ADCCAL	ADCREFS	ADCPGN3	ADCPGN2	ADCPGN1	ADCPGN0
MSB								LSB
Bit7-6	ADCSV	W[1:0]: ADCs H	Inable Bit.					
	00 =	Correlated do	ouble sampling	g off				
	01 =	Input offset	calibration o	on				
	1x =	Correlated do	oubling sampli	ing on (defaul	Lt)			
Bit5	ADCCA	AL: ADC Calibi	ation					
	0 = 1	Normal						
	1 = (Calibration mo	ode					
Bit4	ADCRI	EFS: ADC Inter	nal Reference	e Source Seled	ction			
	0 = H	Band Gap						
	1 = 1	JDD						
Bit.3-0	ADCPO	GN[3:0]: ADC F	Reference Gair	ı				

ADC Trim2	Register							
ADCTRIM2		0x5000036			0x00	0x00		
Reserved	Reserved	Reserved	R/W	R/W	R/W	R/W	R/W	
ADCSCYC2	ADCSCYC1	ADCSCYC0	ADCENFORCE	ADC_ENABLE	Reserved	Reserved	ADCGNDOFF	
MSB							LSB	
Bit7-5	ADCSCYC[2:0]:	ADC Sampling	cycle (Sampli	ng period = ADO	CSCYC + 1 cycl	es)		
Bit4	ADCENFORCE: Ma	anual Samplin	a					
	0 = Normal mod	de						
	1 = Force data	a sampling						
Bit3	ADC_ENABLE: AI	DC reference	buffer enable					
	0 = ADC refere	ence off						
	1 = ADC refere	ence on (must	be 1 if using	ADC8)				
Bit2-1	Reserved							
Bit0	ADCGNDOFF: Gro	ound offset c	orrection					
	0 = Bandgap an	nd ADC refere	nce have commo:	n ground				
	1 = difference	1 = difference between bandgap and ADC reference is compensated by switched cap circuit						

3.2.9 Power Management Unit

The ASIC implements a power management unit providing both reverse battery protection and an on-chip max supply selector between CR2032 battery and USB power. This allows system to boot with a discharged or non-existent CR2032 battery, if USB is available. A diagram is shown in Figure 27 below detailing these features.

Power Management primary characteristics:

- Reverse battery protection for VBAT
- On chip max supply selector between battery and USB power
 VSUP = max(VBAT, USB_3p3V_OUT)
- Seamless switching between USB power supply and CR2032 battery supply
- HW reset resets all registers and the processor
- SW reset resets processor, but preserves state of all registers in address space 0x500X XXXX
- Firmware triggered deep sleep mode

Table 3.32 Power Management Signals

Pin Name	Description
RESET_B	Active-low external reset input (with internal pull-up)
VBAT	Supply Voltage Input – This is the positive voltage input for the device, battery or regulated. LCD and analog charge pump supply voltages are derived from this input. This input has reverse-battery protection circuitry. A 10 μ F decoupling capacitor should be connected to this pin with provision for parallel 0.1 μ F and 1 nF capacitors.
VREG_MCU_PAD1	1.8V Regulated Voltage Output – Used to connect regulated 1.8V supply voltage used by microcontroller core to an external 0.1 μ F decoupling capacitor.
GND	Power Return – Return for VBAT and VDDA pins.
VDDA	Regulated Analog Charge Pump Voltage Output – For external 0.1 µF decoupling of the regulated analog supply voltage derived from the ACP_OUT analog charge pump output.
VDDA_FILT	Filtered VDDA input from VDDA decoupling capacitor.
VFLASH_SEL	Flash voltage supplied to MCU.
VSUP	Supply selector output. Bypass with 10 $\mu F,$ 0.1 $\mu F,$ and 1 nF capacitors.
VSUP_ANA	Supply selector output route-back for AFE. Bypass with 0.1 μF capacitor.
VSUP_DIG	Supply selector output route-back for Digital

Figure 27: Power Management System Diagram

3.2.9.1 Reset

There are two forms of reset that can be issued:

- Hardware reset: After this reset is issued, the 10 kHz clock source is selected and all other clock sources are disabled.
- Software reset: After this reset is issued, the clock setup is kept unchanged along with the brownout selection.

3.2.9.2 Brown-Out Reset

The PMU controls the Brownout Reset. By default, a brown-out will reset the system. Firmware can configure this behavior and select the brown-out reset threshold upon first power up using the PMUBOR register.

3.2.9.3 Deep Sleep mode

The PMU can set the system into deep sleep mode, which is the lowest current consumption mode available in the system. In deep sleep mode:

- The Clough CPU is halted and its power supply disabled
- Any enabled clock source will continue to operate
- The three timers (Timer0, Timer1, and Timer 2) and the SysTick Timer will stop operating
- Timer3 will continue to operate
- All other peripherals will keep running (if enabled and fed by their required source clock)
- The system will leave the deep sleep mode through a Power On Reset, the wakeup timer, or any peripheral that generates an interrupt independently of the interrupt being enabled by the Nested Vector Interrupt Controller

Note: For those peripherals that have a bit in their registers that locally enables an interrupt, this register has to be enabled in order to reset the system. Example: For the GPIO ports PORTB, PORTC, PORTD, and PORTE, the INTE bits of the I/O pins selected to reset the part upon change must be set.

Note 2: All pending interrupts must be serviced/cleared by firmware before deep sleep mode can be entered successfully.

3.2.9.4 Analog Boost Regulator

To support operation of the analog engine above the specified supply voltage, VBAT, range, the analog engine includes an analog boost regulator with regulated outputs used to power those portions of the analog circuitry that cannot be operated at battery voltage. This analog boost regulator can be enabled and disabled under firmware control. When the analog boost regulator is disabled, its output is equal to the battery voltage VBAT. When the analog boost regulator is enabled, the output is regulated to about 3.6 V to support analog engine operation with signal levels up to 3.25 V at transimpedance amplifier outputs. The allowable charge pump input voltage range is equal to the VBAT range of 2.2 V to 3.3 V. Pins are provided for external decoupling of the regulated analog charge pump output, VDDA.

The pin VDDA is to be connected to VDDA_FILT on the PCB with a decoupling capacitor (e.g. 100 nF) placed close to the VDDA_FILT pin for noise filtering.

	Table 3.33 Analog Boost Regulator Signals					
Pin Name	Description					
ACP_CAP1_N	Analog Boost Regulator Capacitor - – Analog engine interface pin connected to ACP_CAP1_P with an external 0.039 μF charge pump capacitor and used to step up voltage for use by the analog circuitry.					
ACP_CAP1_P	Analog Boost Regulator Capacitor + – Analog engine interface pin connected to ACP_CAP1_N with an external 0.039 μF charge pump capacitor and used to step up voltage for use by the analog circuitry.					
ACP_OUT	Analog Boost Regulator Output – Analog engine raw boost regulator voltage output. To be connected to a 0.1 μF external holding capacitor.					

3.2.9.5 Supply Voltage Level Detection

The present battery voltage can be monitored using an input channel of the auxiliary 8-bit ADC (or the sigma delta ADC).

3.2.9.6 Power Management Registers

The following registers are used to control and determine the status of power management functions

3.2.9.6.1 Processor/Digital Power Management Registers

Process	sor Control/Status	s Register						
PMURST			0x50000001			0x01		
W	W	R/W	R	R	R	R	R/W	
HWRS	T SWRST	DSLEEP	RCMON	USBF	WAKEUPF	BOF	PORF	
MSB							LSB	
Bit7	HWRST: Hardware	reset						
	0 = Idle							
	1 = Hardware reset (automatically cleared after reset process completed)							
Bit6	SWRST: Software	reset						
	0 = Idle							
	1 = Software rea	set (automatica	ally cleared	after reset	process complet	ed)		
Bit5	DSLEEP: Deep sle	eep (HALT) mode	e					
	Writing:							
	0 = Clear dee	ep sleep flag						
	1 = Put the	system in deep	sleep - Halt	(all inter	rupts must be cl	eared bef	ore	
	writing this	bit to a 1)						
	Reading:							
	0 = Flag clea	ared						
	1 = System in	n deep sleep mo	ode					
Bit4	RCMON: Main RC (Oscillator Mon	itor					
	0 = Main RC Osc	illator inactiv	/e					
	1 = Main RC Osc:	illator active						
Bit3	USBF: USB flag							
	0 = USB power no	ot detected						
	1 = USB power is	s detected						
Bit2	WAKEUPF: Wake-up	p flag						
	0 = Wake-up even	nt not detected	ł					
	1 = Wake-up even	nt is detected						
Bit1	BOF: Brownout f	lag						
	0 = No brownout							
	1 = Brownout							
Bit0	PORF: Power-On 1	Reset flag						
	Writing:							
	0 = Clear PO	R						
	1 = No effect	t						
	Reading:							
	0 = POR flag	already cleare	ed by applica	tion				
	1 = The system	em just came o	ut of POR or	HW Reset				

Brownout Reset Control Register											
PMUBOR			0x5000002				0x03				
R/W	R,	/W	R/W	Reser	rved	R/W		R/W	R/W		R/W
BOREN	BOR	RST	BORINT	-		BOR_TRIM3	3	BOR_TRIM2	BOR_TRI	EM1	BOR_TRIM0
MSB											LSB
Bit7	BOREN:	Browr	nout enable	9							
	0 = Br	0 = Brownout disabled									
	1 = Br	l = Brownout enabled									
Bit6	BORRST	: Brow	nout Reset	c enable	e						
	0 = Di	sable	Brownout-k	based re	eset						
	1 = En	able E	Brownout-ba	ased rea	set						
Bit5	BORINT	: Brow	nout Inter	rupt							
	0 = Br	ownout	: interrupt	disab	led						
	1 = Br	ownout	: interrupt	c enable	ed						
Bit4	Reserv	ed									
Bit3-0	BOR_TR	IM[3:0)]: Brownou	it three	shold	value					
	0000	1.75	V	1000	2.13	V					
	0001	1.79	V	1001	2.19	V					
	0010	1.83	V	1010	2.26	V					
	0011	1.87	V	1011	2.33	V					
	0100	1.92	V	1100	2.40	V					
	0101	1.97	V	1101	2.56	V					
	0110	2.02	V	1110	2.74	V					
	0111	2.08	V	1111	2.95	V					

3.2.9.6.2 Analog Front-End Power Management Registers

The bits defined in register APCTR0 below are provided to selectively power down sensor interface circuits. In an SG referenced system, it is assumed that the bit ACP_EN has been set before the DAC and TIA are enabled.

Supply 1	Supply bias/status for AFE Register								
PMUSUPPLY			0x5000006			0x00			
R		Reserved	Reserved	served Reserved Rese		Reserved	R/W	R/W	
V2ION_1	INDIC	-	-	-	-	-	ANA_LDO_EN	ACP_EN	
MSE	3							LSB	
Bit7 Bit6-2 Bit1	V2ION_ 0 = V2 1 = V2 Reserv ANA_LU 0 = An	_INDIC: Read 2I disabled 2I enabled <i>ved</i> DO_EN: Analo nalog regula	d-only indic og regulator ator (for VE	cator for ma c enable DD) disabled	lin AFE curr	ent convert	er blas		
Bit0	1 = An ACP_E 0 = An 1 = An	halog regula M: Analog ch halog charge halog charge	itor (for VE narge pump e e pump disak e pump enabl	DD) enabled enable bled (acp_cl .ed (acp_clk	k also disa also enabl	bled) ed)			

Analog	Power	Control Regis	ter 0					
APCTR0			0x50000058			0xFD		
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W
TIA_A_H	EN	TIA_G_EN	DAC_A_EN	DAC_G_EN	BG_CAL_EN	BG_BUF_EN	BG_V2I_EN	BG_EN
MSB								LSB
Bit7	TIA_	A_EN: TIA A po	wer enable					
	0 =	TIA A disabled	1					
	1 = 1	TIA A enabled						
Bit6	TIA_	G_EN: TIA G po	wer enable					
	0 =	TIA A disabled	l					
	1 =	TIA A enabled						
Bit5	DAC_	A_EN: DAC A po	ower enable					
	0 = 1	Battery monito	oring low-bat	tery circu	itry enabled			
	1 = 1	Battery monito	oring low-bat	tery circu	itry enabled			
Bit4	DAC_	G_EN: DAC G po	wer enable					
	0 = 1	Battery monito	oring reset of	circuitry d	isabled			
	1 = 1	Battery monit	oring reset	circuitry e	enabled			
Bit3	BG_C	AL_EN: Bandgap	calibration	n circuit po	ower enable			
	0 =	Calibration ci	rcuit disab	Led				
	1 = 0	Calibration ci	rcuit enable	ed				
Bit2	BG_B	UF_EN: Bandgap	buffer ciro	cuit power e	enable			
	0 = 1	Bandgap voltag	ge-to-current	converter	disabled			
	1 = 1	Bandgap voltag	ge-to-current	converter	enabled			
Bit1	BG_V	2I_EN: Bandgap	-based AFE (current bias	s generator p	ower enable		
	0 = 1	Bandgap buffer	disabled					
	1 = 1	Bandgap buffer	enabled					
Bit0	BG_E	N: Precision b	andgap powe:	r enable				
	0 =	Precision band	lgap disable	d				
	1 =	Precision band	lgap enabled					

Analog Power Control Register 1							
APCTR1 0x50000059 0x80							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-	-	-	-	-	-	-	-
MSB							LSB
Bit7-0 Ros	erved for de	vice manufact	urer's inter	naluse			

3.3 DESIGN FOR TEST FEATURES

To help characterize and debug the system, several design-for-test features are implemented for both the digital and analog engines. This allows bringing internal signals to pins.

RTSELA output comes to pin GPIOC2.

RTSELB output comes to pin GPIOC3.

Pins GPIOC2 and GPIOC3 are designated to bring out digital test signals. To observe these signals, Port C registers should be configured to make GPIOC2 and GPIOC3 pins become digital outputs (i.e. enable output enables, and disable pull-ups, pull-downs, and read-enables for these pins).

Real-ti	.me Ou	itput Register	Real-time Output Register								
RTO			0x5000005			0x00					
Reserve	ed	Reserved	R/W	R/W	R/W	R/W R/W R/W					
-		-	RTSELA2	RTSELA1	RTSELA0	RTSELB2	RTSELB1	RTSELB0			
MSB								LSB			
Bit7-6	Rese	erved									
Bit5-3	RTSE	LA[2:0]: Real	L-time Outpu	t A Select							
	000	= None. Norr	nal pin func	tion.							
	001	= 10 kHz osci	illator outp	ut (divided	by 2), expe	ct 5 kHz at t	the pin				
	010	= Main RC osc	cillator out	put							
	011	= Crystal oso	cillator clo	ck output (divided by 2), expect 16.	.384 kHz at t	he pin			
	100	= PLL output	clock (undi	vided)							
	101	= Sigma-delta	a ADC modula	tor output o	clock						
	110	= Sigma-delta	a ADC dither	output 0							
	111	= Brownout re	eset mask								
Bit2-0	RTSE	LB[2:0]: Real	L-time Outpu	t B Select							
	000	= None. Norr	nal pin func	tion.							
	001	= Full rate of	clock								
	010	= Clock prove	ided to MCU								
	011	= Clock prove	ided to USB	IP							
	100	= Clock prove	ided to anal	og charge pu	ump						
	101	= Sigma-delta	a ADC modula	tor output o	data (single	bit stream)					
	110	= Sigma-delta	a ADC dither	output 1							
	111	= Real-time A	ADC8 output								

4.0 ELECTRICAL CHARACTERISTICS

4.1 ELECTRICAL CONDITIONS

4.1.1 Absolute Maximum ratings

Table 4.34 Absolute maximum ratings							
Parameter	Descriptions	MIN	MAX	UNIT			
VBAT	Supply voltage	-3.6	3.6	V			
VUSB		-0.3	10	V			
Input Voltage	MCU interface	-0.3	VBAT+0.3	V			
Storage Temperature Range		-40	+85	°C			

4.1.2 Operating conditions

	Table 4.35 Operating Conditions						
Parameters			MIN	ТҮР	MAX	UNIT	
VBAT	Supply voltage	Per analog performance specifications	2.2	3.0	3.3	V	
VUSB		USB supply voltage	4.4	5.0	5.25	V	
ТА	Operating free-air temperature	Per analog performance specifications	0		50	°C	
		Real-time clock circuitry functional	-40		85	°C	
TCAL	Calibration temperature		22	25	28	°C	
	Humidity range		10%		95%	RH	

4.1.3 Electrical Characteristics over Operating Range

4.1.3.1 Supply Current

	I	Table 4.36 Supply current				
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ISUPPLY	Supply current					
	(Analog circuitry enabled, digital engine active w/ 4MHz clock [MO Core 160 μA/MHz plus 100 μA supply bias], peak)	2.2V≤VBAT≤3.3V			6	mA
	(Analog circuitry enabled, digital engine active w/ 4MHz clock [MO Core 160 μA/MHz plus 100 μA supply bias], average)	2.2V≤VBAT≤3.3V			3	mA
	(Analog circuitry disabled, no pull-ups loaded, digital engine active w/ 1MHz clock [MO Core 160 μA/MHz plus 100 μA supply bias])	2.2V≤VBAT≤3.3V 0°C≤TA≤50°C			1.5	mA
ILCD	LCD driver circuit current draw, 32.768 KHz oscillator operation	2.2V≤VBAT≤3.3V 0°C≤TA≤50°C		70		μΑ
IANLG	Analog circuitry current draw when enabled	2.2V≤VBAT≤3.3V 0°C≤TA≤50°C			2	mA
ISTBY	Standby Current (Analog circuitry disabled, no pull-ups loaded, digital engine deep sleep, RTC, PWM and peripherals disabled)	2.2V≤VBAT≤3.3V 0°C≤TA≤50°C		1.1		μΑ
IRTC	Real-time clock circuit current draw, 32.768 KHz oscillator operation	2.2V≤VBAT≤3.3V 0°C≤TA≤50°C		0.9		μA
RRBP	Reverse-battery protection circuit ON impedance. Guaranteed by design.	1.8V≤VBAT≤3.3V 0°C≤TA≤50°C 0mA≤ISUPPLY≤10mA			5	Ω
tCPSU	Analog charge pump start-up time	2.2V≤VBAT≤3.3V 0°C≤TA≤50°C			2	ms

4.1.3.2 Supply Voltage Monitor

	Table 4.37 Supply Voltage monitor							
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
VlowBatt	Low-battery Voltage (VBAT referenced to GND)	0°C≤TA≤50°C		2.4		V		
Vbrown-out	Brown-out (Dead-battery) Voltage (VBAT referenced to GND) Interrupt Level, Post Trim	-40°C≤TA≤85°C		2.2		V		

4.1.3.3 General Purpose I/O

(-40°C≤T_A≤85°C, 1.8V≤VBAT≤3.3V)

	Та	ble 4.38 General Purpose I/	D			
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Outputs:						
VOL	Low-level output voltage	@ IOL minimum			0.1 x VBAT	V
VOH	High-level output voltage	@ IOH minimum	0.9 x VBAT			V
IOL	Low-level output current	VOL=0.1 x VBAT		2		mA
IOLPW M	Low-level output current, PWM Output	VOL=0.1 x VBAT		10		mA
IOH	High-level output current	VOH=0.9 x VBAT		2		mA
IOHPP	High-level output current, Peripheral power pin, PIO_PP10, PIO_PP11, PIO_PP20, & PIO_PP21.	VOH=0.9 x VBAT		10		mA
Inputs:						
VIL	Maximum low-level input voltage				0.3 x VBAT	V
VIH	Minimum high-level input voltage		0.7 x VBAT			V

4.1.3.4 Buzzer Driver

(BUZZER_HI & BUZZER_LO, 0°C≤TA≤50°C, 2.2V≤VBAT≤3.3V)

		Table 4.39 Buzzer Driver				
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VBUZZDRV	Buzzer drive voltage (leg relative to GND)			tbd		V
RBUZZDRV	Buzzer series impedance (per leg, external to the device)	-40°C≤TAA≤85°C 0°C≤TA≤50°C	tbd		tbd	Ω Ω
fBUZZDRV	Buzzer frequency	CPIEZO=70000pF ±30%	900		2000	kHz
VPPIEZO	Piezo generated voltage withstand voltage	CPIEZO=70000pF ±30%, 50μsec rise, 200μsec duration			±100	V
CPIEZO	Piezo capacitance range		3500	70000	100000	pF

4.1.3.5 Source DAC Voltage

(A thru H, RR, TH1)

	Table 4.40 Source DAC Voltage								
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
VSG	Analog Common Voltage, SG, Post Calibration (Referenced to GND)	VBAT=2.75V 20°C≤TA≤30°C	1.01	1.1	1.2	V			
VSGSTEP	Analog Common Voltage, SG, Step Size	VBAT=2.75V 20°C≤TA≤30°C		0.2		mV			
VDDA	Regulated Analog Supply Voltage, Enabled (Referenced to GND)	VBAT=2.75V 20°C≤TA≤30°C	3.5			V			
VSFS	Full-scale Source DAC Voltage (Referenced to GND)	Fine DAC code=FFH Course DAC code =3FH 2.2V≤VBAT≤3.3V 0°C≤TA≤50°C	2.5	3.0		V			
	Recommended Source DAC Voltage Range (Referenced to GND) for measurements and offset readings		1.2		2.5	V			
VDACSTEP	Source DAC Voltage Step Size	VBAT=2.75V 20°C≤TA≤30°C		0.37	1	mV			
ISMAX	Maximum source current	2.2V≤VBAT≤3.3V 0≤VOUT≤VSFS 0°C≤TA≤50°C	250	300		μΑ			
	Programming Resolution								
	Coarse DAC		6			bits			
	Fine DAC		8			bits			
	Effective linearity, best-fit straight line	2.2V≤VBAT≤3.3V 0°C≤TA≤50°C			±0.75	LSB			
ΔVS	Worst-case source voltage error at sensor (driven pin to an analog common pin) versus manufacturing target calibration voltage over device life and operating extremes	2.2 V \leq VBAT \leq 3.3 V 0°C \leq TA \leq 50°C 0 \leq IS \leq 150 μ A Worst-case offsets Worst- case gain errors	-5		5	mV			
	,,	2.2 V \leq VBAT \leq 3.3 V 5°C \leq TA \leq 40°C 200 mV \leq VS \leq 500 mV 0 \leq IS \leq 8 μ A Typical offsets and gain errors		< ±2.5		mV			
ΔVS25,WC	Worst-case source voltage error at sensor (driven pin to GND referenced pin) versus manufacturing target calibration voltage of 2.5 V over device life and operating extremes	2.2 V ≤VBAT≤ 3.3 V 0°C ≤TA≤ 50°C 0 ≤IS≤ 250 μA Worst-case offsets Worst- case gain errors	-25		25	mV			

Table 4.40 Source DAC Voltage							
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
∆VS25	Typical-case source voltage error at	2.2 V ≤VBAT≤ 3.3 V					
	sensor (driven pin to GND	5°C ≤TA≤ 40°C					
	referenced pin) versus	0 ≤IS≤ 80 μA					
	manufacturing target calibration	Typical offsets and gain		< ±4		mV	
	voltage of 2.5 V over device life and	errors					
	operating extremes						
∆VSL	Load regulation at fixed VBAT and	DAC code=3FFH					
	TA.	2.2V≤VBAT≤3.3V					
	Guaranteed by design.	0°C≤TA≤50°C					
		0≤IS≤150 μA					
			-2.5		2.5	mV	
ISLOFF	Source voltage OFF leakage	0≤VOUT≤VSFS	-10	< ±2	10	nA	
	current (per output channel)	2.2V≤VBAT≤3.3V					
	Guaranteed by design.	0°C≤TA≤50°C					
tsw	Source voltage switching time, 3	0≤VOUT≤VSFS			1	ms	
	time constants	2.2V≤VBAT≤3.3V					
		0°C≤TA≤50°C					

4.1.3.6 Transimpedance Amplifier

	Table 4.41 Transimpedance Amplifier								
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT									
VIO	Input offset voltage	0°C≤TA≤50°C			±0.5	mV			
IIB	Input bias current Guaranteed by design.	0°C≤TA≤50°C	-0.1		0.1	nA			
	Maximum amplifier output voltage		3.25			V			
	Output load current capability		-3		3	mA			

4.1.3.7 Switch Matrix

	Table 4.42 Switch Matrix						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
RGSW	Switch resistance for switches	2.2V≤VBAT≤3.3V		60	90	Ω	
	connecting to GND	0°C≤TA≤50°C					

4.1.3.8 Sigma Delta ADC

	Та	able 4.43 Sigma Delta ADC				
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Resolution (bipolar two's complement result)		17			bits
	SNR	Integration window = 16384 ADC clock cycles of 0.5 MHz		116		dB
	Flicker-free Code Resolution	Integration window = 16384 ADC clock cycles of 0.5 MHz		19		bits
		Integration window = 1024 ADC clock cycles of 0.5 MHz		16.2		bits
	Sampling frequency			0.5		MHz
	Integral non-linearity				6	bits
	Quantization error				0.75	LSB
Tint	A/D conversion time (selectable, power of 2 steps)	2.2V≤VBAT≤3.3V -40°C≤TA≤85°C	1.024		65.536	ms
	Differential input voltage range, minimum	2.2V≤VBAT≤3.3V 0°C≤TA≤50°C	-0.75		0.75	V
	Common mode input voltage range	2.2V≤VBAT≤3.3V 0°C≤TA≤50°C	3.25			V
	ADC gain error	2.2V≤VBAT≤3.3V 0°C≤TA≤50°C	-3.5		3.5	%FS
	ADC start-up time	2.2V≤VBAT≤3.3V 0°C≤TA≤50°C	1000			μs

4.1.3.9 LCD Characteristics

(1/3 bias method,, $0^{\circ}C \le TA \le 50^{\circ}C$, 2.1V \le VBAT \le 3.3V)

Table 4.44 LCD						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VLCD	LCD drive voltage		3.2	4.0	4.5	V
VBAT	Battery Voltage		2.2	3.0	3.3	V
CL	Load Capacitance, 4x30 LCD segments, 100 pF per LCD segment				3	nF
Settling time	99% rise time to 2/3VLCD and 1/3VLCD				180	ms

fLCDframe	Frame frequency (4 time slices per	8	32	64	Hz
	frame)				

5.0 PACKAGE

Ernie Ics are packaged within a 120 balls, 8x8mm BGA, 0.65 mm pitch for low cost manufacturing. Figure 28 shows the ball assignment. Table 5.45 describes each signal. Please refer to individual sections of the spec for further details.

	1	2	3	4	5	6	7	8	9	10	11
A	LCD_REF_H	LCD_SEG29	LCD_SEG28	LCD_SEG23	LCD_SEG19	LCD_SEG15	LCD_SEG12	LCD_SEG9	LCD_SEG6	LCD_SEG3	LCD_SEG1
в	LCD_REF_L	LCD_COM3	LCD_SEG27	LCD_SEG22	LCD_SEG18	LCD_SEG14	LCD_SEG11	LCD_SEG8	LCD_SEG5	LCD_SEG2	LCD_SEG0
с	VLCD	LCD_COM2	LCD_SEG26	LCD_SEG21	LCD_SEG17	LCD_SEG13	LCD_SEG10	LCD_SEG7	LCD_SEG4	SPI_MO/P D3	SPI_MI/PD 2
D	LCD_CAP_P	LCD_COM1	LCD_SEG25	LCD_SEG20	LCD_SEG16	VBAT	VBAT	SCL/PD0	SDA/PD1	SPI_CS- L/PD5	SPI_CK/PD 4
E	LCD_CAP_ N	LCD_COM0	LCD_SEG24	USB_5V_IN	USB_5V_IN	GND	USB_3p3V_ OUT	TXD/PD6	RXD/PD7	PE2	VSUP_DIG
F	ACP_OUT	ACP_CAP1_ P	ACP_CAP1_ N	VREG_MCU _PAD1	VSUP	NC	GND	PC0/CS2-L	PEO	PE1	GND
G	USB_DM	SWDIO	GND	VFLASH_SE L	GND	GND	PC1/ CS3-L	PC2/ CS4-L	PC3/CS5-L	PC4/DETEC T	PC5/BUZZE R_LO
н	USB_DP	SWCLK	оѕсоит	OSCIN	GND	GND	GND	PC6/ BUZZER_HI	PC7/PWM	PB0/SW1	PB1/SW2
ı	бнн	GO	нм	TH1	VSUP_ANA	VDDA	VDDA_FILT	u.	ADC_REF	PB2/SW3	PB3/SW4
к	GH	AO	нн	RR	G	A	c	F	TMS	PB4/SW5	PB5/SW6
L	GM	АМ	TH2	SG	В	D	E	н	RESET_B	PB6/SW7	PB7/SW8

5.1 BALL ASSIGNMENT

Figure 28: BGA Package Ball Assignment (Top View)

5.2 SIGNAL DESCRIPTIONS

Table 5.45 Package Signal Descriptions							
Ball #	Signal Name	I/O	Functional Description				
E2	LCD COM0	Digital O	LCD COM0 driver output				
D2	LCD_COM1	Digital O	LCD COM1 driver output				
C2	LCD_COM2	Digital O	LCD COM2 driver output				
B2	LCD_COM3	Digital O	LCD COM3 driver output				
B11	LCD_SEG0	Digital O	LCD SEG0 driver output				
A11	LCD_SEG1	Digital O	LCD SEG1 driver output				
B10	LCD_SEG2	Digital O	LCD SEG2 driver output				
A10	LCD_SEG3	Digital O	LCD SEG3 driver output				
C9	LCD_SEG4	Digital O	LCD SEG4 driver output				
B9	LCD_SEG5	Digital O	LCD SEG5 driver output				
A9	LCD_SEG6	Digital O	LCD SEG6 driver output				
C8	LCD_SEG7	Digital O	LCD SEG7 driver output				
B8	LCD_SEG8	Digital O	LCD SEG8 driver output				
A8	LCD_SEG9	Digital O	LCD SEG9 driver output				
C7	LCD_SEG10	Digital O	LCD SEG10 driver output				
B7	LCD_SEG11	Digital O	LCD SEG11 driver output				
A7	LCD_SEG12	Digital O	LCD SEG12 driver output				
C6	LCD_SEG13	Digital O	LCD SEG13 driver output				
B6	LCD_SEG14	Digital O	LCD SEG14 driver output				
A6	LCD_SEG15	Digital O	LCD SEG15 driver output				
D5	LCD_SEG16	Digital O	LCD SEG16 driver output				
C5	LCD_SEG17	Digital O	LCD SEG17 driver output				
B5	LCD_SEG18	Digital O	LCD SEG18 driver output				
A5	LCD_SEG19	Digital O	LCD SEG19 driver output				
D4	LCD_SEG20	Digital O	LCD SEG20 driver output				
C4	LCD_SEG21	Digital O	LCD SEG21 driver output				
B4	LCD_SEG22	Digital O	LCD SEG22 driver output				
A4	LCD_SEG23	Digital O	LCD SEG23 driver output				
A2	LCD_SEG24	Digital O	LCD SEG24 driver output				
E3	LCD_SEG25	Digital O	LCD SEG25 driver output				
D3	LCD_SEG26	Digital O	LCD SEG26 driver output				
C3	LCD_SEG27	Digital O	LCD SEG27 driver output				
B3	LCD_SEG28	Digital O	LCD SEG28 driver output				
A3	LCD_SEG29	Digital O	LCD SEG29 driver output				
C1	VLCD	Analog I/O	LCD charge pump 4.7 µF bypass capacitor connection.				

semiconductor

	Table 5.45 Package Signal Descriptions					
Ball #	Signal Name	I/O	Functional Description			
A1	LCD_REF_H	Analog I/O	LCD bias network 0.47 µF capacitor connection.			
B1	LCD_REF_L	Analog I/O	LCD bias network 0.47 µF capacitor connection.			
E1	LCD_CAP_N	Analog I/O	LCD charge pump 1 µF charge pump capacitor connection, negative			
D1	LCD_CAP_P	Analog I/O	LCD charge pump 1 µF charge pump capacitor connection, positive			
C10	SPI_MO/PD3	Digital I/O	SPI data output (GPIOD3)			
C11	SPI_MI/PD2	Digital I/O	SPI data input (GPIOD2)			
D11	SPI_CK/PD4	Digital I/O	SPI clock output (GPIOD4)			
E8	TXD/PD6	Digital I/O	UART transmitted data (GPIOD6)			
E9	RXD/PD7	Digital I/O	UART received data (GPIOD7)			
D9	SDA/PD1	Digital I/O	I2C serial data I/O (GPIOD1)			
D8	SCL/PD0	Digital I/O	I2C serial clock output (GPIOD0)			
G1	USB_DM	Digital I/O	USB data signal minus			
H1	USB_DP	Digital I/O	USB data signal plus			
E7	USB_3p3V_OUT	O Power	USB 3.3 V output with 1 µF decoupling capacitor			
E4, E5	USB_5V_IN	I Power	USB 5V supply input / USB detection with 1 µF decoupling capacitor.			
H9	PC7	Digital I/O	GPIOC7 (default PWM output)			
H3	OSCOUT	Analog I/O	32.768 KHz oscillator output. Compensate with 10 pF capacitor.			
H4	OSCIN	Analog I/O	32.768 KHz oscillator input. Compensate with 10 pF capacitor.			
H8	PC6	Digital I/O	GPIOC6			
G11	PC5	Digital I/O	GPIOC5			
L10	PB6	Digital I/O	GPIOB6			
L11	PB7	Digital I/O	GPIOB7			
K10	PB4	Digital I/O	GPIOB4			
K11	PB5	Digital I/O	GPIOB5			
H10	PB0	Digital I/O	GPIOB0			
H11	PB1	Digital I/O	GPIOB1			
J10	PB2	Digital I/O	GPIOB2			
J11	PB3	Digital I/O	GPIOB3			
D10	SPI_CS-L/PD5	Digital I/O	GPIOD5 (Peripheral (SPI) CS output 1)			
F8	PC0	Digital I/O	GPIOC0			
G7	PC1	Digital I/O	GPIOC1			
G8	PC2	Digital I/O	GPIOC2			
G9	PC3	Digital I/O	GPIOC3			
F9	PE0	Digital I/O	GPIOE0			
F10	PE1	Digital I/O	GPIOE1			
E10	PE2	Digital I/O	GPIOE2			
G10	PC4	Digital I/O	GPIOC4			
F4	VREG_MCU_PAD1	O Power	1.8V microcontroller core regulator 0.1 µF decoupling capacitor			
D6,D7	VBAT	I Power	Supply voltage input with 10 $\mu F,$ 0.1 $\mu F,$ and 1 nF bypass capacitors.			
J6	VDDA	O Power	Regulated analog supply 0.1 µF decoupling capacitor			
E6,F7,	GND	Power	Power return(s) – Ground pins			
F11,G3,						
G5,G6,						
H5,H6,						
H7						

Table	e 5.45 Packa

	Table 5.45 Package Signal Descriptions					
Ball #	Signal Name	I/O	Functional Description			
F2	ACP_CAP1_P	Analog I/O	Step-up regulator 0.039 μF analog charge pump capacitor connection, positive			
F3	ACP_CAP1_N	Analog I/O	Step-up regulator 0.039 µF analog charge pump capacitor connection, negative			
F1	ACP_OUT	Power O	Analog charge pump output 0.1 µF holding capacitor			
J9	ADC_REF	Analog I/O	ADC reference supply voltage 1µF decoupling capacitor			
J4	TH1	Analog I/O	Thermistor 1			
L3	TH2	Analog I/O	Sensor contact TH2			
K4	RR	Analog I/O	Reference resistor			
J1	GHH	Analog I	Transimpedance Amplifier G Feedback GHH			
K1	GH	Analog I	Transimpedance Amplifier G Feedback GH			
L1	GM	Analog I	Transimpedance Amplifier G Feedback GM			
J2	GO	Analog O	Transimpedance Amplifier G Output			
K2	AO	Analog O	Transimpedance Amplifier A Output			
L2	AM	Analog I	Transimpedance Amplifier A Feedback AM			
J3	HM	Analog I	Transimpedance Amplifier A Feedback HM			
K3	НН	Analog I	Transimpedance Amplifier A Feedback HH			
K5	G	Analog I/O	Sensor contact G			
L5	В	Analog I/O	Sensor contact B			
K6	А	Analog I/O	Sensor contact A			
L6	D	Analog I/O	Sensor contact D			
K7	С	Analog I/O	Sensor contact C			
L7	E	Analog I/O	Sensor contact E			
K8	F	Analog I/O	Sensor contact F			
L8	Н	Analog I/O	Sensor contact H			
J8	J	Analog I/O	Sensor contact J			
L4	SG	Analog I/O	Analog reference voltage with 10 nF decoupling capacitor			
H2	SWCLK	Digital I	SerialWire clock with 10 K Ω external pull-down resistor			
G2	SWDIO	Digital I/O	SerialWire data with 10 K Ω external pull-down resistor			
K9	TMS	Digital I	Test input: connect to GND on application PCB			
L9	RESET_B	Digital I	Reset input			
G4	VFLASH_SEL	Power O	Flash voltage supplied to MCU			
J7	VDDA FILT	Power O	Filtered VDDA input from VDDA decoupling capacitor.			
F5	VSUP	Power O	Supply selector output bypassed with 10 $\mu\text{F},$ 0.1 $\mu\text{F},$ and 1 nF capacitors			
J5	VSUP_ANA	Power O	Supply selector output route-back for AFE bypassed with 0.1 μF capacitor			
E11	VSUP_DIG	Power O	Supply selector output route-back for Digital			

5.3 PACKAGE DRAWING BGA PACKAGE

Figure 29: BGA Package Outline Drawing

5.4 LEAD ASSIGNMENT (QFN 10x10, 88 LEAD)

Figure 30: QFN Package Ball Assignment (Top View)

Inde

5.5 SIGNAL DESCRIPTION - QFN PACKAGE

Table 5.46 QFN Package Signal Descriptions						
Lead#	Signal Name	I/O	Functional Description			
1	LCD_COM2	Digital O	LCD COM2 driver output			
2	LCD_SEG17	Digital O	LCD SEG17 driver output			
3	LCD_COM1	Digital O	LCD COM1 driver output			
4	LCD_SEG18	Digital O	LCD SEG18 driver output			
5	LCD COM0	Digital O	LCD COM0 driver output			
6	LCD_REF_H	Analog I/O	LCD bias network 0.47 µF capacitor connection.			
7	LCD_SEG19	Digital O	LCD SEG19 driver output			
8	LCD_REF_L	Analog I/O	LCD bias network 0.47 µF capacitor connection.			
9	LCD_SEG20	Digital O	LCD SEG20 driver output			
10	LCD_SEG21	Digital O	LCD SEG21 driver output			
11	VLCD	Analog I/O	LCD charge pump 4.7 µF bypass capacitor connection.			
12	LCD_SEG22	Digital O	LCD SEG22 driver output			
13	LCD_SEG23	Digital O	LCD SEG23 driver output			
14	LCD_CAP_P	Analog I/O	LCD charge pump 1 µF charge pump capacitor connection, positive			
15	LCD_CAP_N	Analog I/O	LCD charge pump 1 µF charge pump capacitor connection, negative			
16	LCD_SEG24	Digital O	LCD SEG24 driver output			
17	LCD_SEG25	Digital O	LCD SEG25 driver output			
18	LCD_SEG26	Digital O	LCD SEG26 driver output			
19	LCD_SEG27	Digital O	LCD SEG27 driver output			
20	LCD_SEG28	Digital O	LCD SEG28 driver output			
21	LCD_SEG29	Digital O	LCD SEG29 driver output			
22	VBAT	I Power	Supply voltage input with 10 μ F, 0.1 μ F, and 1 nF bypass capacitors.			
23	USB_5V_IN	I Power	USB 5V supply input / USB detection with 1 µF decoupling capacitor.			
24	USB_3p3V_OUT	O Power	USB 3.3 V output with 1 µF decoupling capacitor			
25	USB_DM	Digital I/O	USB data signal minus			
26	USB DP	Digital I/O	USB data signal plus			
27	VSUP	Power O	Supply selector output bypassed with 10 μF, 0.1 μF, and 1 nF capacitors			
28	VREG MCU PAD1	0 Power	1 8V microcontroller core regulator 0.1 uE decoupling capacitor			
29	VELASH SEL	Power O	Flash voltage supplied to MCU			
30	VSUP ANA	Power O	Supply selector output route-back for AFE bypassed with 0.1 uF			
31	OSCOUT	Analog I/O	32.768 KHz oscillator output. Compensate with 10 pF capacitor.			
32	OSCIN	Analog I/O	32.768 KHz oscillator input. Compensate with 10 pF capacitor.			
33	ACP CAP1 N	Analog I/O	Step-up regulator 0.039 µF analog charge pump capacitor			
		5.1	connection, negative			
34	ACP CAP1 P	Analog I/O	Step-up regulator 0.039 µF analog charge pump capacitor			
		U U	connection, positive			
35	ACP_OUT	Power O	Analog charge pump output 0.1 µF holding capacitor			
36	VDDA	O Power	Regulated analog supply 0.1 µF decoupling capacitor			
37	GM	Analog I	Transimpedance Amplifier G Feedback GM			
38	GO	Analog O	Transimpedance Amplifier G Output			
39	AO	Analog O	Transimpedance Amplifier A Output			

Table 5.46 QFN Package Signal Descriptions				
Lead#	Signal Name	I/O	Functional Description	
40	AM	Analog I	Transimpedance Amplifier A Feedback AM	
41	TH1	Analog I/O	Thermistor 1	
42	RR	Analog I/O	Reference resistor	
43	А	Analog I/O	Sensor contact A	
44	E	Analog I/O	Sensor contact E	
45	SWDIO	Digital I/O	SerialWire data with 10 K Ω external pull-down resistor	
46	SWCLK	Digital I	SerialWire clock with 10 K Ω external pull-down resistor	
47	ADC_REF	Analog I/O	ADC reference supply voltage 1µF decoupling capacitor	
48	RESET_B	Digital I	Reset input	
49	TMS	Digital I	Test input: connect to GND on application PCB	
50	PB3	Digital I/O	GPIOB3	
51	PB2	Digital I/O	GPIOB2	
52	PB1	Digital I/O	GPIOB1	
53	PB0	Digital I/O	GPIOB0	
54	PC7	Digital I/O	GPIOC7 (default PWM output)	
55	PC6	Digital I/O	GPIOC6	
56	PC5	Digital I/O	GPIOC5	
57	PC4	Digital I/O	GPIOC4	
58	PC3	Digital I/O	GPIOC3	
59	PC2	Digital I/O	GPIOC2	
60	PC1	Digital I/O	GPIOC1	
61	PC0	Digital I/O	GPIOC0	
62	VSUP_DIG	Power O	Supply selector output route-back for Digital	
63	RXD/PD7	Digital I/O	UART received data (GPIOD7)	
64	TXD/PD6	Digital I/O	UART transmitted data (GPIOD6)	
65	SPI_CS-L/PD5	Digital I/O	GPIOD5 (Peripheral (SPI) CS output 1)	
66	SPI_CK/PD4	Digital I/O	SPI clock output (GPIOD4)	
67	SPI_MO/PD3	Digital I/O	SPI data output (GPIOD3)	
68	SPI_MI/PD2	Digital I/O	SPI data input (GPIOD2)	
69	SDA/PD1	Digital I/O	I2C serial data I/O (GPIOD1)	
70	SCL/PD0	Digital I/O	I2C serial clock output (GPIOD0)	
71	LCD_SEG1	Digital O	LCD SEG1 driver output	
72	LCD_SEG3	Digital O	LCD SEG1 driver output	
73	LCD_SEG5	Digital O	LCD SEG1 driver output	
74	LCD_SEG7	Digital O	LCD SEG1 driver output	
75	LCD_SEG9	Digital O	LCD SEG1 driver output	
76	LCD_SEG0	Digital O	LCD SEG1 driver output	
77	LCD_SEG2	Digital O	LCD SEG1 driver output	
78	LCD_SEG4	Digital O	LCD SEG1 driver output	
79	LCD_SEG11	Digital O	LCD SEG1 driver output	
80	LCD_SEG6	Digital O	LCD SEG1 driver output	
81	LCD_SEG8	Digital O	LCD SEG1 driver output	
82	LCD_SEG13	Digital O	LCD SEG1 driver output	
83	LCD_SEG10	Digital O	LCD SEG1 driver output	
84	LCD_SEG12	Digital O	LCD SEG1 driver output	

	Table 5.46 QFN Package Signal Descriptions			
Lead#	Signal Name	I/O	Functional Description	
85	LCD_SEG15	Digital O	LCD SEG1 driver output	
86	LCD_SEG14	Digital O	LCD SEG1 driver output	
87	LCD_SEG16	Digital O	LCD SEG1 driver output	
88	LCD_COM3	Digital O	LCD COM3 driver output	

5.6 PACKAGE DRAWING – QFN PACKAGE

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS		A	0.8	0.85	0.9
STAND OFF		A1	0	0.035	0.05
MOLD THICKNESS		A2		0.65	0.67
L/F THICKNESS		A3	0.203 REF		
LEAD WIDTH		b	0.15 0.2 0.25		0.25
BODY SIZE	Х	D	10 BSC		
BODT SIZE	Y	E	10 BSC		
EAD PITCH		е	0.4 BSC		SC
ED 6176	×	J	8	8.1	8.2
CP SIZE	Y	к	8	8.1	8.2
EAD LENGTH		L	0.35	0.4	0.45
PACKAGE EDGE TOLERANCE		aaa	0.1		
MOLD FLATNESS		bbb	0.1		
COPLANARITY		ccc	0.08		
LEAD OFFSET		ddd		0.1	
EXPOSED PAD OFFSET		eee	0.1		

Figure 31: QFN Package Outline Drawing

6.0 REVISION HISTORY

Table 6.47 Revision History				
Rev #	Date	Action	Ву	
0.1	11/27/2012	Original system specification	SM	
0.2	01/12/2014	Indie version	PH	
0.3	09/10/2015	Indie open market version	CR	
0.4	2/18/2016	Minor updates to remove non-essential, internal information	ER	
0.5	3/18/2016	Updates to Interrupts, PMU, LCD, GPIOs, Timers, RTC to provide additional details on the functionality of each of these blocks	ER	
0.6	4/1/2016	Correct revision numbering, updated clock tree information in 5.1.5 and 5.1.6, correct FLASH endurance information, corrected Register 6 ADC Trim2 register table, added switch matrix diagram, added PMU diagram showing USB and battery capabilities.	ER	
0.7	5/4/2016	Imported high resolution diagrams for switch matrix and power management, corrected pin description table, removed register numbering which was confusing, fixed font and column width on interrupt vector table, RTC description was updated with more detailed information, various correction to GPIO descriptions/features, RC18TRIM register and clock source information was added	ER	
0.8	7/14/2016	Changes to update documentation for A4 revision of ASIC die. Major changes to document organization	SM	
0.9	9/20/2016	Update for A5 revision of ASIC die. Added information on I2C, SPI and UART operation and registers	SM	
0.91	1/5/2017	Added references to alternate package availability	ER	
0.92	2/24/2017	Updated sleep currents	ER	

Table 6.47 Revision History				
Rev #	Date	Action	Ву	
1.0	8/22/2017	Updated LCD drive voltages		
		Updated RTC, Timer3 and LCD description to receive XTAL clock divided by 2.		
		Updated 10 kHz RC clock source to indicate internal division by 2		
		Updated Figure 3		
		Updated WKPTIME register description (formula)		
		Added Section 3.1.13.1: Notes to GPIO operation and configuration	SM	
		Updated PDPD and PDPU register descriptions		
		Updated PCPWMCFG register description		
		Updated SX Control Register description of SX6		
		Updated bit names in ADC Trim0 register to be consistent with remaining document		
		Update PMURST description to emphasize that all interrupts must be cleared before initiating deep sleep		
		Update PMUBOR description to correct threshold table		

7.0 REFERENCES

- [1] Indie semiconductor ARM CORTEX M0 core programming guide, *Aydeekay_Core_160_8.pdf*
- [2] USB Hardware Interface Design Specification (pdf document)
- [3] USB Software Stack Interface User Manual (pdf document)

8.0 CONTACTS

United States

32 Journey Aliso Viejo, California 92656, USA Tel: +1 949-608-0854 sales@indiesemi.com

China

232 Room, Donghai Wanhao Plaza, South Hi-tech 11th Road, Hi-tech Industry Park, Nanshan District, Shenzhen, China. Tel: +86 755-86116939

Scotland

MWB Business Exchange 9-10 St. Andrew Square Edinburgh EH2 2AF, Scotland Tel: +44 131 718 6378

http://www.indiesemi.com/

Important Notice

indie semiconductor reserves the right to make changes, corrections, enhancements, modifications, and improvements to indie semiconductor products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on indie semiconductor products before placing orders. indie semiconductor products are sold pursuant to indie semiconductor's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of indie semiconductor products and services described herein. indie semiconductor assumes no liability for the choice, selection, application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by indie semiconductor by this document.

The materials, products and information are provided "as is" without warranty of any kind, whether express, implied, statutory, or otherwise, including fitness for a particular purpose or use, merchantability, performance, quality or non-infringement of any intellectual property right. Indie semiconductor does not warrant the accuracy or completeness of the information, text, graphics or other items contained herein. indie semiconductor shall not be liable for any damages, including but not limited to any special, indirect, incidental, statutory, or consequential damages, including without limitation, lost of revenues or lost profits that may result from the use of the materials or information, whether or not the recipient of material has been advised of the possibility of such damage.

Unless expressly approved in writing by two authorized indie semiconductor representatives, indie semiconductor products are not designed, intended, warranted, or authorized for use as components in military, space, or aircraft, in systems intended to support or sustain life, or for any other application in which the failure or malfunction of the indie semiconductor product may result in personal injury, death, or severe property or environmental damage.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017, indie semiconductor, all Rights Reserved