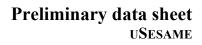


iND83223 "µSesame"

indie's highly integrated, microcontroller with integrated 400MHz Transmitter and high power I/Os

9/14/15


Preliminary Data sheet

1.0 TABLE OF CONTENT

1.0	TABLE OF CONTENT 2
2.0	LIST OF TABLES
3.0	LIST OF FIGURES
4.0	REGISTER CONVENTION
5.0	GENERAL DESCRIPTION
6.0	PINOUT AND PACKAGE
6.1	Package overview
6.2	Package dimensions9
6.3	Pin Description10
7.0	ELECTRICAL CHARACTERISTICS 12
7.1	Absolute maximum Rating12
7.2	Recommended Operating Conditions12
7.3	Current Consumption
8.0	DEVICE OVERVIEW
8.1 8.1 8.1 8.1	.2 Watch Dog Timer
8.2 8.2	RF Receiver
8.2 8.2	
8.3	Ultrasound Transceiver

	ock Sensor	
8.4.1	Shock Sensor Usage Description	
8.4.2	Shock Sensor Related Registers	46
	I	
8.5.1	LIN Interface	47
8.6 UA	RT	62
8.6.1	UART Operation	63
8.6.2	UART Registers	65
8.7 SP	I Interface	70
8.7.1	SPI Functionality	71
8.7.2	SPI Registers	73
8.8 I ² C	Interface	76
8.8.1	I2C Functionality	76
8.8.2	I2C Registers	86
	-	
8.9 AD	С	90
8.9.1	ADC Description	90
8.1.1	ADC Registers	
	-	
8.10 Pu	ulse Width Modulators (PWM)	
8.10.1	PWMs Usage Description	
8.10.2	PWMs Registers	
	-	
8.11 G	PIOs	
8.11.2	GPIO Registers	
	-	
8.12 Sł	hort Circuit Protection Circuits	
8.12.1	Fuse Elimination Usage Description	
8.12.2		
8.12.3	Short Circuit Protected Related Registers	
8.13 CI	lock Sources	
8.13.1	Clock Sources Characteristics	
8.13.2		
8.13.3		
8.13.4		
8.13.5	0	
8.13.6	PMU Usage Description	140
8.14 W	ake-Up Timer	142
		A A A
9.0 RE	EFERENCES	
10.0 F	REVISION HISTORY	

11.0	CONTACTS	145
		1-10

2.0 LIST OF TABLES

Table 1 : PIn List	10
Table 2 : Absolute Maximum Ratings	12
Table 3 : Recommended Operating Conditions	12
Table 4 : Current Consumption	13
Table 5 : Interrupt Vector Table	20
Table 6 - RF specification, recommended operating conditions unless otherwise specified	23
Table 7 : Ultrasound Receiver Performance Specification, Recommended Operating Conditions unless otherwise specified	39
Table 9 - ID bits and number of bits	47
Table 10 - LIN Inactivity Time	48
Table 11 - LIN Wake-Up Repeat Time	48
Table 12 - LIN Timing Related Registers	48
Table 13 - LIN Timing Related Registers	49
Table 14- LIN data length (when the length bits have the value "1111b")	60
Table 15 - UART baud rates, divider values and errors	63
Table 16 : SPI interface signals	70
Table 17 - Filter Tabs and output	88
Table 18 : ADC Performance Specification, Recommended Operating Conditions, unless otherwise specified	90
Table 19 PWM Prescaler Divide Values	99
Table 20 -GPIO Characteristics, Typical Operating Conditions	105
Table 21 - GIO and SIO Pin Functional Configuration	106
Table 22 - Clock Performance Specification, recommended operating conditions unless otherwise specified	135
Table 23 - Peripherals with specific clock source requirements	137

3.0 LIST OF FIGURES

Figure 1: µSesame Pinout Diagram (Top View)	8
Figure 2: QFN (7mm x 7mm) 48-pin Package Dimensions	9
Figure 3: μSesame Block Diagram	14
Figure 4: ASK RF receiver	23
Figure 5– Ultra Sound Receiver Block Diagram	
Figure 6– Ultra Sound Receiver Digital System	
Figure 7– Ultra Sound State Machine	
Figure 8– SPI Timing Diagram	71
Figure 9 – Slave Mode Timing Waveform with CLK_ST_ENB = 1 (Reception, 7-bit Address Mode)	79
Figure 10 – Slave Mode Timing Waveform with CLK_ST_ENB = 0 (Reception, 7-bit Address Mode)	79
Figure 11 – Slave Mode Timing Waveform (Transmission, 7-bit Address Mode)	80
Figure 12 – Slave Mode Timing Waveform (Reception, 10-bit Address Mode)	80
Figure 13 – Slave Mode Timing Waveform (Transmission, 10-bit Address Mode)	80
Figure 14 – Master Timing Waveform (Transmission)	84
Figure 15 – Master Timing Waveform (Reception)	85
Figure 16– ADC Block Diagram	91
Figure 17– ADC Input Settling Time	92
Figure 18– ADC Reference Voltage	93
Figure 19 - Typical GIO Interface	107
Figure 20 - Typical SIO Interface	108
Figure 21: Freewheel Action	108
Figure 22 – LED pin Block Diagram	110

4.0 REGISTER CONVENTION

Several registers will be defined and explained throughout this document. The general format of the description of the registers is as follows:

Name of the	Register	Sta	rting Address	(Hex)	Reset	or Default Val	ue (Hex)
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name	Bit_Name
MSB							LSB

Where R/W is the read and write permissions of the specific bit. An example:

RF_DCDTIM	E		0x50011004			0x3614		
R/W	R/W	R/W	R/W	R/W	R/W	R/W R/W		
MAX_TE1	MAX_TE0	MIN_GB5	MIN_GB4	MIN_GB3	MIN_GB2	MIN_GB1	MIN_GB0	
MIN_TE3	MIN_TE2	MIN_TE1	MIN_TE0	MAX_TE5	MAX_TE4	MAX_TE3	MAX_TE2	
MSB							LSB	

The name of this register is RF_DCDTIME (RF Decoder Time). It is a 16-bit register, located at address 0x50011004 and 0x50011005. The first row of data (MAX_TE[1:0], MIN_GB[5:0]) corresponds to address 0x50011004 with default value of 0x14 and the second row of data (MIN_TE[3:0], MAX_TE[5:2]) corresponds to address 0x50011005 with default value of 0x36.

5.0 GENERAL DESCRIPTION

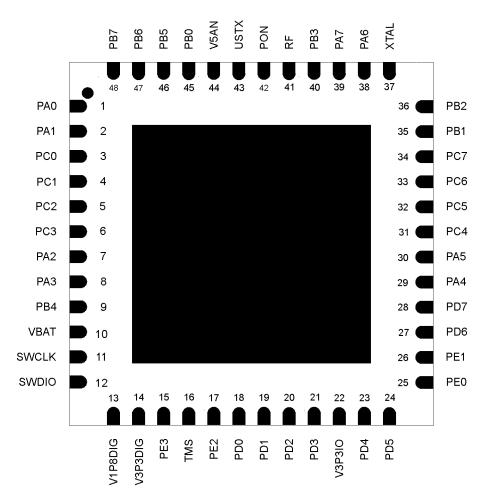
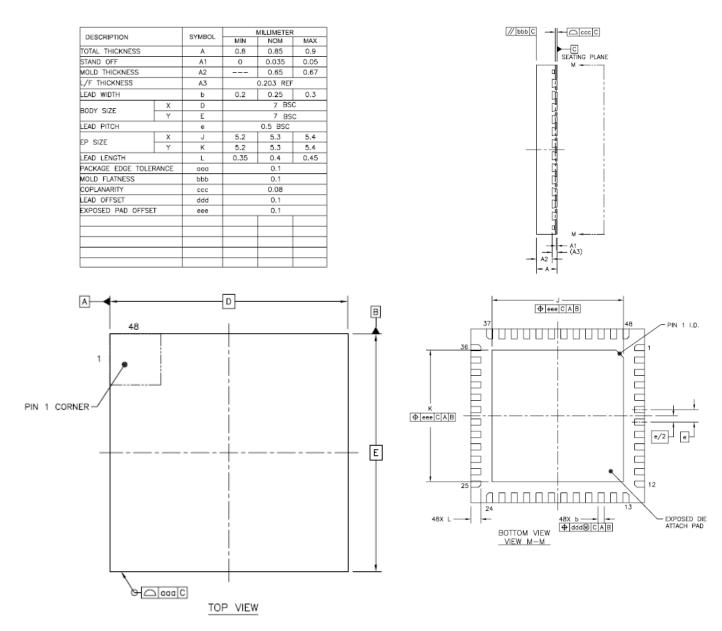
This ASIC integrates all of the functions necessary to implement a car alarm module.

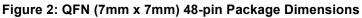
It has the following features:

- A super-heterodyne ISM band, 433.92MHz, ASK receiver, with up to -110dBm of sensitivity
- An ARM Cortex M0 32-bit microcontroller with 160kBytes of flash memory and 8kBytes of SRAM, with the following additional architectural features
 - System Tick Timer (SysTick 24 bits, interruptible)
 - o 3 additional 32-bit timers
 - Programmable Watch-Dog Timer
 - Built-in Nested Vectored Interrupt Controller (NVIC)
 - Built-in Wake-up Interrupt Controller (WIC)
 - Serial Wire Debugger
- A 40kHz ultra-sound Doppler-effect based intrusion detector transceiver
- 15 high voltage (9-45V) general purpose I/O ports which can source 5mA or sink 25mA
- 8 high voltage (9-45V) general purpose I/O ports, which can sink 200mA in order to directly drive a relay coil,
- 1 high voltage (9-45V) general purpose I/O port which can source 200mA or sink 25mA
- 12 low voltage (3.3V nominal) general purpose I/O ports.
- All associated power management circuits are included
- 2 x ADC (8-bit), total of 28 channels, and selectable input references.
- 2 x PWM (12-bit)
- LIN Interface (2.0)
- UART Interface
- SPI Interface
- I2C Interface
- µSesame contains three oscillators which may be used to generate a timebase
 - a 3.58MHz high accuracy crystal oscillator, which is used as a reference for the RF and for the ultrasound blocks
 - o a 10MHz, 1% accurate R-C oscillator
 - o a 10kHz, low power oscillator, for current saving operation
- μSesame is designed to withstand load dump events of up to 45V on its supply pin and on every high voltage I/O. It is also designed to withstand electrical discharges to its 12V I/Os according to ISO10605 standard at 8KV.

6.0 PINOUT AND PACKAGE

6.1 PACKAGE OVERVIEW


Figure 1: µSesame Pinout Diagram (Top View)

6.2 PACKAGE DIMENSIONS

The dimensions of the package are defined in the following table and drawings:

6.3 PIN DESCRIPTION

Table '	Fable 1 : Pln List						
Pin#	Name	Туре	Description				
1	PA0/CAPO	GIO	General purpose I/O operating over full Vbat range				
2	PA1/P	GIO	General purpose I/O operating over full Vbat range				
3	PC0/AUX3	SIO	High current, general purpose I/O operating over full Vbat range				
4	PC1/AUX2	SIO	High current, general purpose I/O operating over full Vbat range				
5	PC2/DTV	SIO	High current, general purpose I/O operating over full Vbat range				
6	PC3/TRV/PWM2	SIO	High current, general purpose I/O operating over full Vbat range, with PWM				
7	PA2/ LANTERNA	GIO	General purpose I/O operating over full Vbat range				
8	PA3/MASTER	GIO	General purpose I/O operating over full Vbat range				
9	PB4/TAPE	PSIO	General purpose I/O operating over full Vbat range, with high current sourcing capability				
10	VBAT	Supply	9V to 45V battery voltage				
11	SWCLK	Digital Input	Serial Clock Input (Debugger)				
12	SWDIO	DiglO	Serial Data (Debugger)				
13	V1p8DIG	Analog output	1.8V digital voltage regulator output for external circuit and/or bypass capacitor. Used internally to supply MCU and SRAM.				
14	V3p3DIG (Vdd)	Analog output	Vdd, 3.3V digital voltage regulator output for external circuit and/or bypass capacitor. Used internally to supply digital circuits				
15	PE3/TCK	3V3IO	3.3V I/O, or JTAG test mode clock				
16	TMS	3V3IN	JTAG test mode select				
17	PE2/LIN_TR_EN TDI	3V3IO	3.3V I/O, LIN_TR_EN or JTAG TDI				
18	PD0/MISO	3V3IO	3.3V I/O, SPI-MISO				
19	PD1/MOSI	3V3IO	3.3V I/O, SPI-MOSI				
20	PD2/SCK	3V3IO	3.3V I/O or SPI-SCK				
21	PD3/SSEL	3V3IO	3.3V I/O, SPI-SSEL				
22	V3p3IO	Analog output	3.3V voltage regulator output for external circuit and/or bypass capacitor				
23	PD4/UTXD/URXD	3V3IO	3.3V I/O, UART-TXD or UART-RXD				
24	PD5/UTXD/URXD	3V3IO	3.3V I/O, UART-TXD or UART-RXD				
25	PE0/SCL	3V3IO	3.3V I/O or open drain I2C SCL				
26	PE1/SDA/TDO	3V3IO	3.3V I/O or open drain I2C-SDA or JTAG TDO				

Table '	Table 1 : PIn List					
Pin#	Name	Туре	Description			
27	PD6/LTXD/LRXD	3V3IO	3.3V I/O, LIN-TXD or LIN-RXD			
28	PD7/LTXD/LRXD	3V3IO	3.3V I/O, LIN-TXD or LIN-RXD			
29	PA4/SIREN_OUT	GIO	General purpose I/O operating over full Vbat range or sensing input for short circuit protection of siren			
30	PA5/SETAE	GIO	General purpose I/O operating over full Vbat range or sensing input for short circuit protection of blinker			
31	PC4/VIDRO	SIO	High current, general purpose I/O operating over full Vbat range			
32	PC5/BLOQ/PWM1	SIO	High current, general purpose I/O operating over full Vbat range with PWM			
33	PC6/AUX	SIO	High current, general purpose I/O operating over full Vbat range			
34	PC7/SETAS/PWM1	SIO	High current, general purpose I/O operating over full Vbat range with PWM			
35	PB1/SIR/PWM2	GIO	General purpose I/O operating over full Vbat range with PWM			
36	PB2/PAN	GIO	General purpose I/O operating over full Vbat range)			
37	XTAL	Analog In	crystal oscillator pin or internal clock input pin, requires 100nF DC block capacitor in series between the pin and crystal			
38	PA6/SETAD	GIO	General purpose I/O operating over full Vbat range or sensing input for short circuit protection of blinker			
39	PA7/IGN/PWM2	GIO	General purpose I/O operating over full Vbat range with PWM			
40	PB3/AUX5	GIO	General purpose I/O operating over full Vbat range			
41	RF	Analog In	Single ended input for ISM band ASK receiver			
42	PON	Analog In/Out	40KHz, 5V, ultrasound receiver input and bias output for external buffer			
43	USTX/SHKIN	Analog In/Out	40KHz, 5V, CW ultrasound transmitter, Shock sensor input			
44	V5AN	Analog Out	5V voltage regulator output for external circuit and/or bypass capacitor			
45	PB0/LED/PWM1	GIO	General purpose I/O operating over full Vbat range, with PWM			
46	PB5/AUX4	GIO	General purpose I/O operating over full Vbat range			
47	PB6/BLOQ1	GIO	General purpose I/O operating over full Vbat range			
48	PB7/BLOQ2	GIO	General purpose I/O operating over full Vbat range			
TAB	GND	Ground	Ground			

7.0 ELECTRICAL CHARACTERISTICS

7.1 ABSOLUTE MAXIMUM RATING

Absolute maximum ratings are defined in the following table. The operation of the device above these conditions may cause lasting damage and is not recommended.

Parameter	Conditions	Min.	Тур.	Max.	Unit
Vbat voltage		-0.3		+50	V
High voltage digital I/O input voltage	All GIO, SIO and SPIO pins configured as input	-0.3		Vbat+0.3	V
Low voltage digital I/O input voltage	configured as input (3V3IO), no damage	-0.3		V3p3DIG+0.3	V
3V Analog input voltage	Pins, XTAL and RF	-0.3		V3p3AN+0.3	V
5V Analog input voltage	Pins, PON and USTX	-0.3		V5AN+0.3	V
Operating Temp.	de-rated performance, full functionality	-40		+85	°C
HBM (all pins)		-8		8	kV
CDM (all pins)		-800		800	V
MM (all pins)		-400		400	V

7.2 RECOMMENDED OPERATING CONDITIONS

Table 3 : Recommended Operating Conditions							
Parameter	Conditions	min	typ	max	unit		
Vbat voltage		9	12	45	V		
Operating Temp.		-40	25	85	°C		

7.3 CURRENT CONSUMPTION

Table 4 : Current Consumption								
Name	Conditions	Min.	Тур.	Max.	Unit			
Sleep Mode	All circuits disabled, Xtal enable			300	μΑ			
Radio RX	Radio Active		6	TBD	mA			
CPU	fCPU=1MHz		100		μΑ			
Ultrasound	Both TX and RX enabled			2	mA			

8.0 DEVICE OVERVIEW

The μ Sesame device contains the necessary hardware to realize a car alarm module. Figure 3 depicts a high-level block diagram of the device. The device subsystems are described in the following chapters.

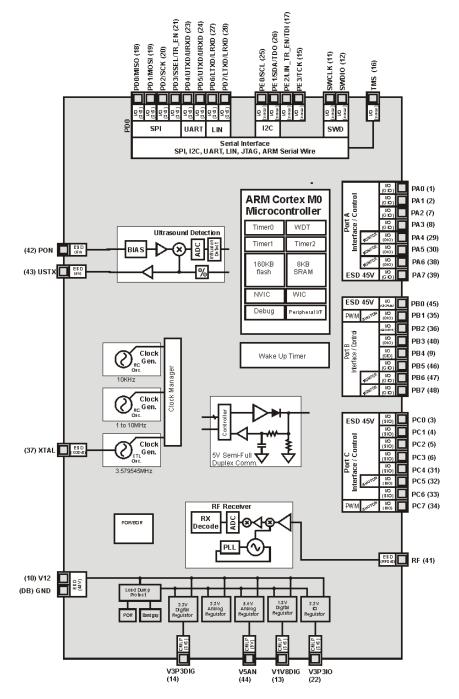


Figure 3: µSesame Block Diagram

8.1 MICROCONTROLLER SUBSYSTEM

The μ Sesame device includes an embedded microcontroller subsystem, which is based on the ARM Cortex M0 core. It includes a program flash memory of 160kBytes, and an SRAM of 8kBytes. It includes three 32-bit timers, plus a dedicated watchdog timer. Additionally, it includes a **N**ested **V**ector Interrupt **C**ontroller (NVIC) to scheduled hardware interrupts, and a **W**akeup Interrupt **C**ontroller (WIC), which enable the control of the various power modes.

Further information can be obtained in the AyDeeKay document <<AyDeeKay_Core_160_8.pdf>>.

8.1.1 Timers (0,1, and 2)

 μ Sesame implements three identical timers: Timer0, Timer1 and Timer2. These timers use the system clock as clock source and once activated count up continuously. They start from the value initially loaded into the counting register (32-bit) and, if enabled, generate an interrupt upon rolling over (0xFFFFFFF \rightarrow 0x00000000).

8.1.1.1 Timers Registers

There are two basic registers associated with each of three timers:

TMR0R	EG	0x50020000			0x0000000				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Т7	Т6	Τ5	T4	Т3	T2	T1	Т0		
T15	T14	T13	T12	T11	T10	Т9	Т8		
T23	T22	T21	T20	T19	T18	T17	T16		
T31	Т30	T29	T28	T27	T26	T25	T24		
MSB							LSB		
Bit31-0	Bit31-0 T[31:0] : Timer Register initial value register.								

TMR0REG: 32-bit Timer initial value register

TMR0CTRL: Timer Control

TMR0CTRL	MR0CTRL 0x50020004				0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	TSTART	
MSB							LSB	
0 =	ART : Timer ei Timer not runn Timer running	ling						

TMR1REG: 32-bit Timer initial value register

TMR1R	EG	0>	<5002000	08	0>	(000000	00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
T7	Т6	Τ5	T4	Т3	T2	T1	Т0		
T15	T14	T13	T12	T11	T10	Т9	Т8		
T23	T22	T21	T20	T19	T18	T17	T16		
T31	T30	T29	T28	T27	T26	T25	T24		
MSB							LSB		
Bit31-0	Bit31-0 T[31:0] : Timer Register initial value register.								

TMR1CTRL: Timer Control

TMR1CTRL	TMR1CTRL 0x5002000C 0x00						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	TSTART
MSB							LSB
0 = 7	ART : Timer ei Fimer not runn Fimer running						

TMR2R	EG	0x50020010			0x0000000				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
T7	Т6	Τ5	T4	Т3	T2	T1	Т0		
T15	T14	T13	T12	T11	T10	Т9	Т8		
T23	T22	T21	T20	T19	T18	T17	T16		
T31	Т30	T29	T28	T27	T26	T25	T24		
MSB							LSB		
Bit31-0	Bit31-0 T[31:0] : Timer Register initial value register.								

TMR2REG: 32-bit Timer initial value register

TMR2CTRL: Timer Control

TMR2CTRL	IR2CTRL 0x50020014 0x00			0x00				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	TSTART	
MSB							LSB	
Bit0 TST	ART: Timer e	nable bit.						
0 = -	0 = Timer not running							
1 = -	Fimer running							

8.1.1.2 Timer Operation

The operation of the timers is quite straightforward. Load the initial counter register, enable the timer and either check (polling mode) the current value of the counter register or enable the interrupt and process it inside the interrupt service routine.

<u>Note</u>: Inside the interrupt the application code must reload the timer counting register.

Code Example1: Enable Timer1 to count from 0xFFFF0000 and to generate interrupt:

```
TMR_Config( 1, TIMERON, 0xFFFF0000); //Enable timer1 to count up from
0xFFFF0000
NVIC_EnableIRQ( TIMER1_IRQn ); //Enable Timer1 interrupt
void Timer1_Handler( void )
{
 *TMR1REG = 0xFFFF0000; //Reload Register
 //**** From this point application code inside ISR****
}
```

8.1.2 Watch Dog Timer

μSesame implements a WDT (**W**atch **D**og **T**imer) that can operate in one of two basic ways: Interrupt Mode: In the event of a WDT rollover an interrupt will be generated. Reset Mode: In the event of a WDT rollover the microcontroller will reset.

8.1.2.1 WDT Registers

The Watch Dog Timer implements two 32-bit registers:

WDTCTRL			0x50020018			0x0000000x	
Reserved	Reserved	Reserved	R/W	R/W	R/W	R/W	R/W
-	-	-	WDTPRES1	WDTPRES0	RSTFLAG	RESETEN	WDTEN
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
MSB							LSB

WDTCTRL: WDT (Watch Dog Timer) Control Register. (32-bit)

Indie

Bit4-3 WDTPRES1: WDTPRES0: WDT Prescaler:

00 = 2¹³/SystemClock

01 = 2¹⁹/SystemClock

10 = 2²²/SystemClock

11 = 2³²/SystemClock

Bit2 **RSTFLAG**: Reset Flag. This flag is set by the system at the initialization if the initialization was caused by a reset triggered by the WDT. The bit can be de-asserted by the application.

- Bit1 **RESETEN**: Reset enable. If enabled a WDT time-out will force the microcontroller to reset. This bit can be asserted but it cannot be de-asserted.
- Bit0 **WDTEN**: WDT enable. This bit can be asserted but it cannot be de-asserted. It means that once the WDT is enabled it cannot be turned off until a Reset or Power-On Reset occurs.

For instance, a system running from a 30MHz Crystal with WDTPRES[1...0] = 10 will trigger the WDT after approximately 0.14 seconds if not cleared properly and in time by the application.

WDTCLR			0x5002001C			0x000000	Ох
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
WCLR7	WCLR6	WCLR5	WCLR4	WCLR3	WCLR2	WCLR1	WCLR0
WCLR15	WCLR14	WCLR13	WCLR12	WCLR11	WCLR10	WCLR9	WCLR8
WCLR23	WCLR22	WCLR21	WCLR20	WCLR19	WCLR18	WCLR17	WCLR16
WCLR31	WCLR30	WCLR29	WCLR28	WCLR27	WCLR26	WCLR25	WCLR24
MSB							LSB

WDTCLR: WDT Clear Register. (32-bit)

Bit31-0 **WCLR[31:0]**: Clear Register. To clear the WDT counting the following words must be written in this order and without any other instruction between then:

0x3C570001

0x007F4AD6

Warning: Programming WDTCLR with other values or in the wrong order will cause the watchdog to throw an interrupt or reset the system.

Example Code: Setting and clearing the WDT. (Interrupt mode with a time of 2²22)

WDT_Config(WDT_INT, WDT22); //Enable WDT in interrupt mode (2^22 system clock cycles)

WDT_Clear();

//Clear WDT

8.1.3 Interrupt Vectors

µSesame implements an interrupt vector defined in the following table:

Table 5 : Interrupt Ve	Table 5 : Interrupt Vector Table									
		Cortex M0 Specific Exceptions								
Name	Number	Comments	Required Interrupt Handler (Function)							
HardFault_IRQn	-13	HardFault handler*	HardFault_Handler (void)							
SVCall_IRQn	-5	Supervisory call*								
PendSV_IRQn	-2	Interrupt-driven request for system level service*								
SysTick_IRQn	-1	SysTick Timer interrupt	void SysTick_Handler(void)							
Cortex M0 Specific Exceptions										
Name	Number	Comments	Required Interrupt Handler (Function)							
BrownOut_IRQn	0	Brownout detection interrupt	void BrownOut_Handler(void)							
ClkMon_IRQn	1	Clock monitor interrupt	void ClkMon_Handler (void)							
-	2	Reserved								
PIN_IRQn	3	Pin change interrupt	void PIN_Handler (void)							
RFRE_IRQn	4	RF: Rising Edge base band signal reception interrupt	void RFRE_Handler (void)							
RFFE_IRQn	5	RF: Falling Edge base band signal reception interrupt	void RFFE_Handler(void)							
I2C_Collision_IRQn	6	I ² C Collision detection interrupt	void I2C_Collision_Handler (void)							

I2C_IRQn	7	I ² C event interrupt	void I2C_Handler (void)
UART_IRQn	8	UART event interrupt	void UART_Handler (void)
LIN_IRQn	9	LIN event interrupt	void LIN_Handler (void)
SPI_IRQn	10	SPI event interrupt	void SPI_Handler (void)
-	11	Reserved	void Default_IRQ_Handler(void)
RFMSG_IRQn	12	RF: Message received interrupt	void RFMSG_Handler (void)
IRQ13_IRQn to IRQ15_IRQn	13-15	Reserved	void Default_IRQ_Handler(void)
TIMER0_IRQn	16	Timer0 interrupt	void Timer0_Handler (void)
TIMER1_IRQn	17	Timer1 interrupt	void Timer1_Handler (void)
TIMER2_IRQn	18	Timer2 interrupt	void Timer2_Handler (void)
WATCHDOG_IRQn	19	Watchdog timer interrupt	void Watchdog_Handler (void)

*Note: For more information see *Cortex-M0 Devices* – *Generic Users Guide (ARM DUI 0497A (ID112109))* at: <u>http://infocenter.arm.com/help/topic/com.arm.doc.dui0497a/DUI0497A_cortex_m0_r0p0_generic_ug.pdf</u>

8.2 RF RECEIVER

µSesame implements a programmable ISM (Industrial, scientific and medical band, 300-450MHz) OOK (on-off keying) low-IF receiver. The local oscillator is generated using a fully integrated fractional-N PLL referenced to an external crystal reference. The received data is digitized using analog to digital converters before being processed by an autonomous digital section.

The receiver uses Weaver architecture for image rejection, primarily to avoid noise imaging. After amplification through an LNA, a rf mixer is used to generate I/Q signals at the IF frequency of 795KHz, where it is filtered to ~500KHz bandwidth. After the second frequency conversion, the I and Q signals are filtered to ~150kHz bandwidth. The wide bandwidth relative to the data symbol rate is necessary to accommodate manufacturing variation in the transmit and receive frequency references.

The frequency generation for the local oscillators is accomplished using a PLL locked to the crystal frequency. The VCO is a low current quadrature ring oscillator. It is expected that 3.579545MHz crystal will be utilized for frequency reference, but care has been taken to allow other potential choices of crystal, such as 4.096MHz. In the default frequency plan, the first LO is generated from 121*fXO = 433.125MHz using the PLL in integer-N mode. The second LO is generated by dividing the first LO, first by a high speed divide-by-eight prescalar, followed by a programmable divider and a quadrature divide-by-four. The default frequency plan uses divide by 17 for the programmable part, for a second LO of 796.2kHz. Due to the slight difference between the LO and IF frequencies, there is a 1.2kHz frequency offset in the baseband data, which appears as a slight additional transmit frequency error to the decoder. For other crystal frequencies, different settings will need to be programmed for the PLL and divider as described below.

After analog filtering, the baseband signal is then digitized at 298kS/s using a 12bit ADC. The digitized signal is dc-offset corrected and AM detected using a CORDIC to produce an AM baseband signal, which is filtered and decimated to an approximately 5kHz bandwidth with 18.6kS/s data rate.

Data is digitally extracted from filtered baseband signal using a digital bit slicer. An integrated decoder may be utilized to decode 1/3-2/3 duty-cycle encoded data. Decoded bits are stored in a bit buffer with capability to store messages as long as 80 bits. Once an entire valid message is stored in the RF bit buffer, an interrupt is generated. The receiver then enters an armed state, but with decoder inactive until the microcontroller re-enables the receiver to receive subsequent messages. The microcontroller should read any data from the bit buffer before re-enabling or else it will be lost.

Alternatively, if an application requires a coding scheme other than 1/3-2/3 coding, the slicer digital output may be made available in real time for the micro to decode the signal by software. The raw signal is guaranteed glitch-free, allowing a simple decode.

The receiver can be run in an autonomous "sniffing" mode with, for example, a 5% on-time duty cycle, in order to save power. Whether in sleep mode or not, intervention by the microcontroller is only required upon reception of an entire message with valid number of bits. The micro can therefore be asleep during normal RF reception, and only needs be awoken by interrupt after an entire message arrives, allowing significant power savings.

Many parameters in the RF are controllable by software. Additionally, functional control such as enabling and disabling the receiver, and the received bits are controllable through registers. The register section describes the functions of various registers related to the receiver. All control registers preset when power-on reset or software reset is asserted.

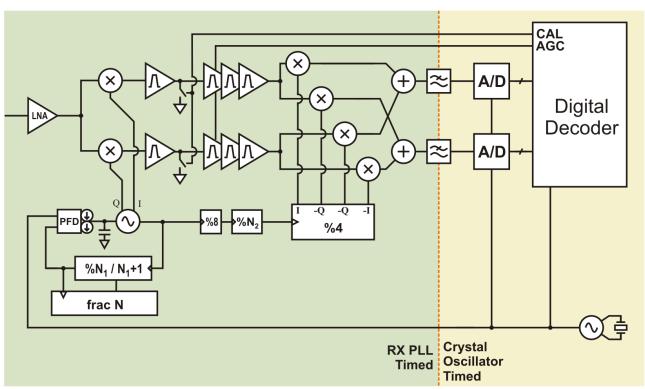


Figure 4: ASK RF receiver

Parameter	Conditions	min	typ	max	unit
LNA input impedance	@433.92 MHz		10-129j		Ω
Sensitivity			-110		dBm
Frequency Range		300		470	MHz
Data Rate				5	kbps
Maximum input signal				-10	dBm
Total Gain	Voltage gain from rf input to I or Q IF outputs at default gain programming	59	71	74	dB
Spurious Emission				-60	dBm

8.2.1 RF receiver usage description

The following code fragment, shows how to configure the radio receiver to a wanted receive frequency of 433.92MHz with a minimum message length of 40 bits. Additionally, it enables message reception interrupts and employs the interrupt handler via the NVIC block in the microcontroller, and to perform a basic response to the interrupt:

```
void RF Init ( void )
{
  // RF Setup for 433.92MHz reception
                                      //RF Enabled
 RF SetState( RFEN );
 RF SnifferMode( SNIFEN );
                                      //Sniffer enabled
 RF AgcControl ( AGCEN, 0x1A );
                                      //AGC Enabled
 RF SetPllBiasTime( PLL48 );
                                      //PLL waits 48 clock cycles
 RF SetSleepTime( RFSLEEP10 );
                                          //Sleep time for sniffer is 10*1024
cycles
 RF SetWakeTime( WAKET18 );
                                       //Wake time from sniff is 18*1024 cycles
 *RFNX = 0x79;
                                       //PLL Integer divider
 *RFNF = 0 \times 00;
                                       //PLL Fractional Divider
 // Hi side rejection enabled, fractional disabled, charge pump and loop filter
 RF Setup0( HISDEN, FDIS, CPT01, 0x0A );
 //16 +DIV LO2[1:0], Base band gain 00 = 0dB, LNA drain res. 1Kohm, LNA bias
1mA
 RF Setup1( DIV LO2 18, BBGAIN0dB, LNADR1K, LNABIAS1mA
                                                           );
 //Delay timer of The slicer, Attack time of The slicer, Time to allow slicer
 //to fast bias, Symbol Decimation rate
 RF SlicerControl( ALPHA02, BETA02 , FT860uS , SDR03 );
 RF SetMinTe( 3 );
                                   //(1+Min Te)*(12*16)/3.58e6
 RF SetMaxTe( 0x1B );
                                   //(1 + Min Te + Max Te)*(12*16)/3.58e6
                                   //(1 + Min Te +
 RF SetMinGb( 0x07 );
                                                                 Max Te
                                                                              +
Min Gb)*(12*16)/3.58e6
 RF SetSnifRt( RTPLL, RFONDIS, 0x0B );
 RF SetMinBitNumber( 0x28 ); //Define minimum message size in bits
}
 NVIC EnableIRQ( RFMSG IRQn ); //Enable RF reception interrupt
```



```
void RFMSG_Handler( void ) // IRQ C RF Message Arrived
{
    if ( *RXNUMBER == CORRECT_FRAME_SIZE ) // If received correct number of bits
    {
        Decode_Message(); // Decode Message
    }
    RF_SetState(RFEN); // Set The RF on
    RF_ReinitDecoder(); // Clear The MSGRDY bit, restarting
}
```

8.2.2 RF Registers

The following registers define the behavior of the RF:

<u>RF_BUFF0-9:</u> RF Buffer Registers containing received bits.

RF_BUFF0-9)	(0x50000020-29)		0xXX			
R	R	R	R	R	R	R	R		
RXDATA7	RXDATA6	RXDATA5	RXDATA4	RXDATA3	RXDATA2	RXDATA1	RXDATA0		
RXDATA15	RXDATA14	RXDATA13	RXDATA12	RXDATA11	RXDATA10	RXDATA9	RXDATA8		
:	:	:	:	:	:	:	:		
RXDATA71	RXDATA70	RXDATA69	RXDATA68	RXDATA67	RXDATA66	RXDATA65	RXDATA64		
RXDATA79	RXDATA78	RXDATA77	RXDATA76	RXDATA75	RXDATA74	RXDATA73	RXDATA72		
MSB							LSB		
be rea	Bit79-0 RXDATA[7:0] : Received data bits. Most recently received bit is stored in RXDATA0. This register should be read when a complete message is ready (determined by reading MSG_RDY bit or having received an interrupt from the RF system) for repeatable results								

<u>RF_NUMB</u>: Returns the number of bits contained in the bit buffer.

RF_NUMB			0x5000002A		0xXX				
Reserved	R	R	R	R	R	R	R		
-	RFNUMB6	RFNUMB5	RFNUMB4	RFNUMB3	RFNUMB2	RFNUMB1	RFNUMB0		
MSB	3 LSB								
Bit6-0 RFNUMB [6:0]: Returns the number of received data bits contained in the bit buffer. For repeatable results, it is recommended to only read this register when a complete message is ready									

RF_STATUS: RF Status Register.

RF_STAT	US		0x5000002B			0xXX			
R/W	R/W	R R Reserved Reserved R R							
RF_EN	SNF_EN	SNF_EN MSG_RDY AGC_FLG DCDMD1 DCDMD0 SLC_OUT RF_SLEEF							
MSB	LSB								
Bit7	RF_EN: Enabl	es RF block.							
() = Disable the	e receiver / 1 =	Enable the rece	eiver					
Bit6	SNF_EN: Enal	oles sniff/sleep r	node in the rec	eiver					
() = Continuous	s mode / 1 = S	niff/Sleep mode	9					
Bit5	MSG_RDY: M	essage ready in	dicator. Readin	ig returns one	if a complete r	message is ava	ilable and the		
1	eceiver is in a	rmed mode, oth	erwise returns	zero. Write is i	gnored unless	in armed mod	e, where		
,	writing a zero o	causes the recei	ver to leave the	e armed state	and start deco	ding message	again		
Bit4	AGC_FLG: AC	GC overflow indi	cator. Returns	one if an overf	low(signal too	large) has occi	urred in		
1	eceiver. Inten	ded for use in co	ontinuous mode	e, where the m	icro may want	to reduce the	gain setting		
Bit3	DCDMD1: Det	ermines what to	do if there is a	n overly-long r	non-guard ban	d element			
() = reset the d	ecoder and star	t looking for ne	w message					
	l = wait until a	guardband is re	eceived before	resetting state	machine				
Bit2	DCDMD0: Det	ermines whethe	r state machine	e transitions or	n edge or level				
(0 = transition on edge / 1 = transition on level								
Bit1	SLC_OUT: Slicer Output								
Bit0 I	RF_SLEEP: RF sleep mode indicator								
() = RF RX is a	ctive / 1 = RF	RX is sleeping						

RF_NBMIN: RF NBMIN Register.

RF_NBMIN			0x50011000		0x28				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
LOW_BPS	NBMIN6	NBMIN5	NBMIN4	NBMIN3	NBMIN2	NBMIN1	NBMIN0		
MSB							LSB		
0 =	W_BPS: Indication Indication Indication W_BPS: Indication Indicatio Indication Indicatio			ngs as 2X (fo	r slow transn	nitters)			
1 = count bit timings at half rateBit6-0NBMIN[6:0]: Minimum number of bits for a valid message									

<u>RF_AGCCTRL:</u> RF Automatic Gain Control Register.

RF_AG	CCTRL					0x50011001			0x98	
R/W	/	R/	W		R/W	R/W	R/W	R/W	R/W	R/W
AGC_I	EN /	AGCT	RM6	6 A	GCTRM5	AGCTRM4	AGCTRM3	AGCTRM2	AGCTRM1	AGCTRM0
MSE	3									LSB
Bit7	AGC_	EN: /	Autor	natic (Gain Contro	Enable				
	0 = Fi	ked g	ain n	node						
	1 = A0	GC er	nable	d						
Bit6-0	AGCT	RM[6	6:0]:	Contro	ols gains of	analog blocks				
	If AGO	C_EN	is ze	ero, the	en the bits ir	n the control reg	isters are used	to directly contro	ol the AGC trim	of the
	analo	g bloc	ks.							
	If AGE	E_EN	is or	ne, the	n the bits se	ets the default ga	ain and reductio	n step		
	Bit4 () = ga	ain st	eps de	own the tabl	e in increment c	of 1; 1= gain ste	ps down the tab	le in increment	of 2)
	Bit3-0	st3	st2	LNA	gain	delta				
	0000	00	00	000	-4.7dB					
	0001	00	00	010	-1.0dB	3.7dB				
	0010	00	00	011	4.5dB	5.5dB				
	0011	00	00	100		5.2dB				
	0100	00		101	15.4dB	5.7dB				
	0101	00		110		5.6dB				
	0110	00		111		5.8dB				
	0111	00		111		5.6dB				
	1000	10	11	111		6.2dB (default)				
	1001	11		111		6.9dB				
	1010	11		111	52.6dB	7.1dB				
	1011		allow							
	11xx	not	allow	red						

RF_SLCCTRL: RF Slicer Control Register

RF_SL	CCTRL			0x5001100	2		0xAB		
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ALPH/	A1 AI	LPHA0	BETA1	BETA0	FTIME1	FTIME0	DR_SYM1	DR_SYM0	
MSB								LSB	
Bit7-6	ALPH	A[1:0] : Co	ontrols deca	y time of sl	icer level. Wi	nen input is i	nside slicer leve	els, slicer	
	decays	s accordir	ng to equation	on (clocked	at decimated	data rate):			
	y[n] = ((1-ALPHA	A)*y[n-1] + A	LPHA*x[n]					
	00 = 1/256 (fastest decay rate)								
	01 = 1/512								
	10 = 1/1024								
	11 = 1/2048 (slowest decay rate)								
Bit5-4	BETA[[1:0] : Cor	ntrols attack	time of slic	er level. Whe	en input is ou	tside slicer leve	els, slicer	
	grows	according	g to equation	n (clocked a	at decimated	data rate):			
	y(n) =	(1-BETA)	*y[n-1] + BE	TA*x[n]					
	00 = 1/	/2 (fastes	t attack rate)					
	01 = 1/	/4							
	10 = 1/	/8							
		•	est attack ra	,					
Bit3-2 fxo/64	FTIME	[1:0] : Co	ntrols the t	ime to allo	w the slicer	to fast bias,	measured in o	clock cycles of	
	00 = 1	cycle (18	us for 3.58	MHz crystal)				
	01 = 32	2 cycles (570us for 3	.58MHz cry	stal)				
	10 = 48	8 cycles (860us for 3	.58MHz cry	stal)				
	11 = 64	4 cycles (1.14ms for	3.58MHz cr	ystal)				
Bit1-0	DR_SYM[1:0]: Sets post-CORDIC decimation rate.								
	00 = 13X								
	01 = 14X								
	10 = 15X								
	11 = 16	6X							

RF SYSTIME: RF System Time Register.

RF_SY	STIME			0x50011003			0x5A	
R/V	V	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PLLTI	ME1	PLLTIME0	SLPTIME2	SLPTIME1	SLPTIME0	WAKETIME2	WAKETIME1	WAKETIME0
MS	В							LSB
Bit7-6	PLL	TIME[1:0]: Con	trols the time to	wait for PLL to	bias.			
	Measured in clock cycles of the fxo/64							
	00 = 32 cycles (570us for 3.58MHz crystal)							
	01 = 48 cycles (860us for 3.58MHz crystal)							
	10 = 64 cycles (1.15ms for 3.58MHz crystal)							
	11 = 128 cycles (2.29ms for 3.58MHz crystal)							
Bit5-3	SLPTIME[2:0]: Controls the sleep time between sniff cycles.							
	Meas	sured in clock o	cycles of the fxo	/64.				
	000 :	= 4*1024 cycles	s (73ms for 3.58	MHz crystal)				
	001 :	= 6*1024 cycles	s (110ms for 3.5	58MHz crystal)				
	010 :	= 8*1024 cycles	s (146ms for 3.5	58MHz crystal)				
	011 :	= 10*1024 cycle	es (183ms for 3	.58MHz crystal))			
	100 :	= 12*1024 cycle	es (220ms for 3	.58MHz crystal)			
	101 :	= 14*1024 cycle	es (256ms for 3	.58MHz crystal)			
	110 :	= 32*1024 cycle	es (586ms for 3	.58MHz crystal))			
	111 :	= 128*1024 cyc	cles (2.34s for 3	.58MHz crystal)			
Bit2-0	WAM	(ETIME[2:0]: C	ontrols the time	to stay awake	after seeing a	valid guard band	l.	
	Meas	sured in clock o	cycles of the fxo	/64.				
		-	s (146ms for 3.5					
		•	es (183ms for 3	-				
	010 = 12*1024 cycles (220ms for 3.58MHz crystal)							
		-	es (256ms for 3	-				
		•	es (293ms for 3	-				
		•	es (330ms for 3	•				
		•	es (440ms for 3					
	111 :	= 32*1024 cycle	es (586ms for 3	.58 MHz crysta	l)			

<u>RF_DCDTIME:</u> RF Decode Time Control Register.

RF_DCDTIMI	E		0x50011004/5	j		0x3614			
R/W	R/W R/W R/W R/W R/W R/W R/W								
MAX_TE1	MAX_TE0	MIN_GB5	MIN_GB4	MIN_GB3	MIN_GB2	MIN_GB1	MIN_GB0		
MIN_TE3	MIN_TE3 MIN_TE2 MIN_TE1 MIN_TE0 MAX_TE5 MAX_TE4 MAX_TE3 MAX								
MSB	MSB LSB								
Bit5-0 MIN	_GB[5:0]: Mini	mum number o	of ADDITIONA	L samples afte	r passing MIN_	TE and			
MAX	_TE for a low	element to be	considered a v	alid guard ban	d length. Defau	It setting			
with	3.58MHz clock	corresponds	to minimum gu	ard band time	of 3.6ms				
Bit11-6 MAX_	TE[5:0]: Maxii	mum number o	of ADDITIONA	L samples after	r passing MIN_	TE for			
an e	dge to be cons	idered short e	nough to be va	lid. Default set	ting with 3.58N	IHz clock			
Corr	esponds to ma	ximum elemer	nt time of 1.45r	ns					
Bit15-12 MIN_TE[3:0] : Minimum number of samples for a valid element time. Counted in									
decimated data rate (fxo/(12*DR_SYM)). Default setting with 3.58MHz clock									
corre	esponds to min	imum element	time of 160us						

<u>RF_SNIFMODE:</u> RF Sniff Mode Regiseter.

RF_SN	IFMOD)E		0x5001100	06		0x0B				
R/W	/ R/W R/W R/W R/W R/W R/W										
RT_SE	EL1	L1 RT_SEL0 RF_ON Reserved SNIFF_NE3 SNIFF_NE2 SNIFF_NE1 SNIFF_NE0									
MSE	3							LSB			
Bit7-6	RT_S	SEL[1:0]: Sel	ects a sourc	e for real-time	output.						
	00 =	supervisor clo	ock								
	01 =	decimator ou	tput (serializ	ed stream)							
	10 =	slicer output									
	11 =	PLL_EN (hig	h if analog b	locks enabled)						
Bit5	RF_C	DN : Force and	alog RF to s	tay on (for test	t).						
	0 = N	lormal									
	1 = R	RF stays on fo	r test								
Bit3-0	SNIF	F_NE[3:0]: N	lumber of ec	lges to check	in each sniff cycl	e before committ	ing to a long				
	Wake cycle. When in sniff mode, the first SNIFF_NE edges are tested for valid timing.										
	If any one of these first edges is badly timed, then the receiver will go to sleep										

<u>RF_AGCMON:</u> AGC Monitor Register

RF_AGCMO	N		0x50011007		0xXX						
R R		R	R	R	R	R	R				
Reserved	AGCDATA6	AGCDATA5	AGCDATA4	AGCDATA3	AGCDATA2	AGCDATA1	AGCDATA0				
MSB							LSB				
Bit6-0 AG	Bit6-0 AGCDATA[6:0]: RF gain control value										

RF_SIGI: I Channel Calibration Monitor Register

RF_SIGI		(0x50011008/9		0xXXXX					
R	R	R	R	R	R	R	R			
CAL_I7	CAL_I6	CAL_I5	CAL_I4	CAL_I3	CAL_I2	CAL_I1	CAL_I0			
Reserved	Reserved	Reserved	Reserved	CAL_I11	CAL_I10	CAL_I9	CAL_I8			
MSB							LSB			
Bit11-0 CAI	Bit11-0 CAL_I[11:0]: Channel I DC calibration value									

RF_SIGQ: Q Channel Calibration Monitor Register

RF_SIGQ			0x5001100A/E	3	0xXXXX				
R	R	R	R	R	R	R	R		
CAL_Q7	CAL_Q6	CAL_Q5	CAL_Q4	CAL_Q3	CAL_Q2	CAL_Q1	CAL_Q0		
Reserved	Reserved	Reserved	Reserved	CAL_Q11	CAL_Q10	CAL_Q9	CAL_Q8		
MSB							LSB		
Bit11-0 CAL_Q[11:0]: Channel Q DC calibration value									

RF_SLCHI: Peak Detector High Value Monitor Register

RF_SLCHI		0	x5001100C/	D	0xXXXX				
R	R	R	R	R	R	R	R		
PDHI7	PDHI6	PDHI5	PDHI4	PDHI3	PDHI2	PDHI1	PDHI0		
PDHI15	PDHI14	PDHI13	PDHI12	PDHI11	PDHI10	PDHI9	PDHI8		
MSB							LSB		
Bit15-0 P	Bit15-0 PDHI[15:0]: Peak detector high value								

RF_SLCLO: Peak Detector Low Value Monitor Register

RF_SLCLO		()x5001100E/ł	=	0xXXXX			
R	R	R	R	R	R	R	R	
PDLO7	PDLO6	PDLO5	PDLO4	PDLO3	PDLO2	PDLO1	PDLO0	
PDLO15	PDLO14	PDLO13	PDLO12	PDLO11	PDLO10	PDLO9	PDLO8	
MSB							LSB	
Bit15-0 PDLO[15:0]: Peak detector low value								

<u>RF_NX:</u> Controls the integer portion of the PLL feedback divider.

RF_NX		0x50018004			0x79				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
NX7	NX6	NX5 NX4 NX3 NX2 NX1 N							
MSB							LSB		
Bit7-0NX[7:0]: Integer part of the divider value for PLL divider.If (F_EN = 0) $f_{LO} = f_{xo} * NX$ If (F_EN = 1) $f_{LO} = f_{xo} * (NX + NF/256)$									

RF_NF		0x50018005			0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
NF7	NF6	NF5	NF4	NF3	NF2	NF1	NF0	
MSB							LSB	
Bit7-0NF[7:0]: Fractional part of the divider value for PLL divider.If (F_EN = 0) $f_{LO} = f_{xo} * NX$ If (F_EN = 1) $f_{LO} = f_{xo} * (NX + NF/256)$								

<u>RF_FETRIM0:</u> RF Front-end Trim0 Register.

RF_FETRIM0		0x50018006			0x9A				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
HI_SD	F_EN	CP_TRM1	CP_TRM0	LF_TRM3	LF_TRM2	LF_TRM1	LF_TRM0		
MSB							LSB		
Bit7	Bit7 HI_SD : Controls image reject mixer to control whether to use high-side or low-side mixing								
	0 = low-side								
	1 = high-side								
Bit6	F_EN: Controls fractional mode								
	0 = integer-N mode								
	1 = fractional-N mode								
Bit5-4	CP_TRM[1:0]: Adjust charge pump current in PLL for optimum settling time								
Bit3-0	LF_TRM[3:0]: Adjust loop filter stabilization resistor in PLL to control overshoot								

<u>RF_FETRIM1:</u> RF Front-end Trim1 Register.

RF_FETRIM1		0x50018007			0x4A				
R/W R/W		R/W	R/W	R/W	R/W	R/W	R/W		
DIV_LO21	DIV_LO20	BBGAIN1	BBGAIN0	LNA_DRES	LNAB_PG2	LNAB_PG1	LNAB_PG0		
MSB							LSB		
Bit7-6 DIV_LO2[1:0] : Divide value from PLL frequency to LO2 frequency ($f_{LO2} = f_{LO1}/(32*DIV_LO2)$) 00 = 8*15*4 01 = 8*16*4 10 = 8*17*4 11 = 8*18*4 Bit5-4 BBGAIN[1:0] : Sets baseband amplifier gain 00 = 0.6 dB 01 = 6.0 dB 10 = 11.3 dB									
Bit3 LN 0 = 1 =	11 = 15.8 dB LNA_DRES: LNA drain resistor $0 = 2k\Omega$ $1 = 1k\Omega$ LNAB_PG[2:0]: Adjust loop filter stabilization resistor in PLL								

8.3 ULTRASOUND TRANSCEIVER

An ultrasound intrusion sensor is a transceiver transmitting 40kHz ultrasound to the environment and receiving the reflected audio signal back through two piezo transducers. If sound is reflected by any moving object with orthogonal portion of the speed relative to the sensors is above ~6km/h, with enough surface area, the sensor will trigger the alarm. Due to the Doppler effect the receiving audio from approaching object will be at a higher frequency than the transmitted signal and from a distancing object will be at lower frequency.

The transmitter consists of a continuous wave source at 40kHz, which is generated by dividing down from the 3.58MHz crystal oscillator. The receiver is an AM demodulator in digital domain, which detects any AM modulation in the received signal with frequencies between 20Hz and 200Hz with more than 0.9% modulation depth in the highest sensitivity setting.

Furthermore, the receiver provides amplitudes of demodulated I and Q signals, which can be used by a more complex detection algorithm.

8.3.1 Receiver

First stage of the receiver is an external bipolar transistor (2SC4081 or equivalent) common emitter amplifier mounted with the transducer. This way the signal is amplified before being sent to main board through a 1-2m cable, in which unwanted interference signals may be picked up electromagnetically from sources outside the vehicle causing false triggering of the alarm. This bipolar transistor is biased with a constant dc current by from μ Sesame.

The integrated part of the receiver comprises an external buffer, DC bias current circuit, three stage DC coupled low pass amplifiers with one continuous time balun/amplifier with single ended input and differential output followed by two differential switched capacitor amplifiers/filters. The gain of the last stage amplifier can be changed digitally.

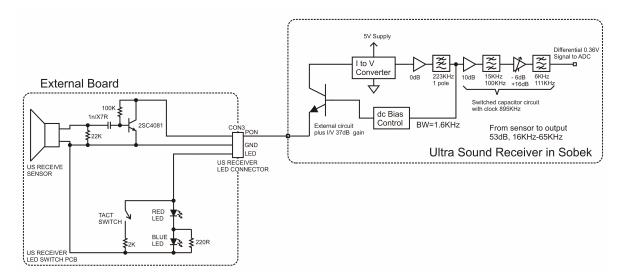
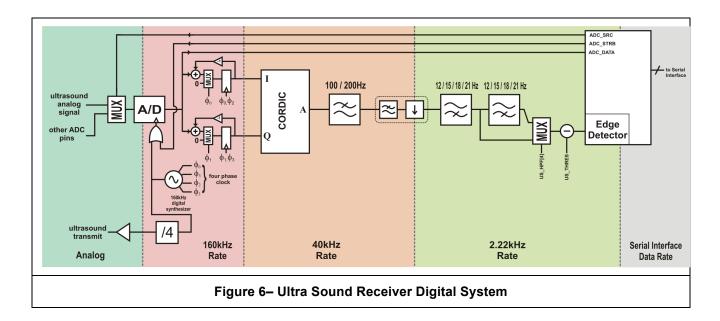
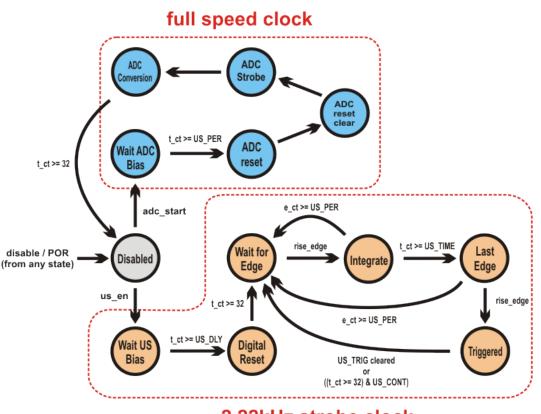


Figure 5– Ultra Sound Receiver Block Diagram



The received signal is converted from analog to digital via an ADC. The receiver operates at a data rate of 160kHz, digitally generated from the crystal oscillator clock using a fractional-N clock divider. The integer and fractional divide values are programmable using the US_NX and US_NF register settings. This divider generates a strobe signal at 160kHz, which is further divided into four phases of 40kHz for signal sampling. Since the transmit signal is also derived from this 160kHz frequency, the demodulation is homodyne.


The ADC is set to sample at 160kS/s. The first sample is subtracted from the third sample to generate an I phase data. Similarly, the second sample is subtracted from the fourth sample to generate Q phase data. After four samples are received to generate the I/Q data, a CORDIC produces $sqrt(I^2+Q^2)$, which is used as the amplitude of the waveform.

This amplitude data is low pass filtered with a single pole filter with a bandwidth set to either 100Hz or 200Hz selectable through the US_LPF register bit. This signal is then decimated by a factor of 18 using an accumulate and dump decimator to produce a 2.22kS/s data stream.

The signal is then filtered with either one or two high pass filter poles. The number of filters is selectable by US_HPF[4], and the bandwidth of each is selectable to be one of four possible values using the US_HPF[3:2] and US_HPF[1:0] bits for the first and second filter respectively. After filtering, a detection threshold programmable using the US_THRES register word is subtracted. The detection threshold can be programmed from 0.1% to 9.4% of the full scale ADC signal level in 16 approximately log spaced steps. The sign of this signal is passed to a state machine, which detects the presence of an intruder according to a proprietary detection algorithm.

2.22kHz strobe clock

Figure 7– Ultra Sound State Machine

The detection state machine is depicted in Figure 7. The state machine utilizes two counters: t_ct counts the number of cycles elapsed in the present state, and e_ct counts the number of cycles since the last rising edge of the ultrasound signal. The number of cycles is counted at the clock rate of the system, according to the state it is in, as explained below.

The state machine is divided into two separate parts. The main function is enabled by setting the US EN register bit, which activates the ultrasound transmit and receive subsystems. This function has the state machine timed at 2.22kHz (40kHz divided by 18). The system starts by enabling all the analog components and waiting for a programmable time until they are fully biased. Then the digital system is reset, which also has the effect of setting all filter outputs and state to zero. The system then waits until it sees the first rising edge of the ultrasound signal. It then goes to a state which counts the total time elapsed while having rise-to-rise time not longer than a programmable value set by US PER. If any rise-to-rise transition, as measured by the e ct counter, is longer than the value programmed by US PER then the system returns to the "Wait for Edge" state. As long as edges come with small enough period, the e ct counter never achieves the value set by US PER so that the t ct counter can reach the alarm trigger time set by US TIME. In this case, the system moves to the "Last Edge" state. Here it will wait to see one additional correctly timed edge before alarming. If the next edge occurs too late, the system resets back to "Wait for Edge". Since the t ct counter resets every time the system changes state, this forces there to be at least US TIME duration with fast enough edges and guarantees alarm with at least US TIME+US PER such time.

Г

٦

If the "Triggered" state is entered, an interrupt is generated. The US_TRIG bit is set, as well as the appropriate bit in the interrupt vector. The analog bias, 40kHz transmit signal, and digital DSP blocks remain on, but the edge decoder is deactivated. The edge decoder can be activated by clearing the US_TRIG bit. The ultrasound function can be disabled from any state by clearing the US_EN bit.

 μ Sesame detects the receiver input open and short conditions. This information is stored in US_RXFAULT register.

otherwise specified	Receiver Performance Specification, Recommended				
Parameter	Conditions	min	typ	max	unit
Carrier amplitude from US transducer		0.5	1	1.5	mV
Carrier frequency		20	40	80	kHz
Trigger threshold of envelope amplitude at transducer	Level 1- largest environment	6	9	12	μV
	Level 2	8	12	16	μV
	Level 3	14	20	28	μV
	Level 4- smallest environment	35	50	70	μV
Total equivalent input noise at transducer				0.6	μV
Programmable external Bipolar transistor bias current	USIBIAS=001 – 111	100		900	μΑ
Min Voltage Gain Input Output	USGAIN=0000, Voltage gain from transducer to output rBase=80k^, 120k^,		41		dB
Max Voltage Gain Input Output	USGAIN=1111, Voltage gain from transducer to output rBase=80k, 120k,		64		dB
Receiver 3dB bandwidth		16		65	kHz
Supply Rejection	from 5V supply to output at 40KHz		17		dB

8.3.2 Transmitter

The ultrasound transmitter is a 5V inverter with average 1.2mA and peak 26mA capability to drive the ultrasound piezo transducer at 40kHz. The 40kHz signal is generated by programmable fractional division of the crystal oscillator output signal. The shape of output waveform can be controlled by TX_WF bit in US_THRES register. Furthermore, the ultrasound transmitter may be disabled separately from the RX with US_TX_ON bit in US_STATUS register, in order to alleviate any potential interference issues with the RF receiver.

The ultrasound TX open/short is detected through auxiliary ADC. SMP_CYC bits in US_THRES register controls when to generate ADC sampling strobe for open/short detection.

8.3.3 Ultrasound Related Registers

US_STAT	US		0x50000040		0x02					
R/W	R/W	Reserved	Reserved R/W Reserved R/W R/W							
US_EN	US_TRIG	-	US_INTTYPE	US_ACTIVE	US_CONT	US_TX_ON	-			
MSB							LSB			
Bit7 I	Bit7 US_EN: Writing one turns on the US sensor. Read returns one if US sensor is enabled.									
Bit6 I	JS_TRIG: Read	d returns one i	f triggered. Writing	zero clears the t	riggered conditi	on of the US ser	nsor.			
Bit4 I	JS_INTTYPE: (Control when t	o throw an interrup	ot for ultrasound						
() = when integra	ator timeout h	appens							
	= when DSP r	ising edge is o	letected							
Bit3 I	JS_ACTIVE: U	Itrasound Sen	sor Ready							
() = Ultrasound	Sensor not rea	ady							
	= Ultrasound	Sensor ready								
Bit2 I	JS_CONT: Ultr	asound Senso	or Continuous Mod	e						
() = Require sof	tware rearm at	fter a trigger							
	= Auto-rearm	the ultrasound	l after a trigger							
Bit1 I	JS_TX_ON: UI	rasound Trans	smitter Enable Sigi	nal						
() = Transmitter	is off								
	1 = Transmitter is on									

<u>US_STATUS:</u> Ultrasound System Status Register.

US TIME: Ultrasound System Time Register.

US_TIME			0x50000041		0x67					
R/W	R/W	Reserved	R/W	Reserved	R/W	R/W	Reserved			
US_DLY1	US_DLY0	US_PER1	US_PER0	US_TIME3	US_TIME2	US_TIME1	US_TIME0			
MSB							LSB			
00 = 01 = 10 = 11 = Bit5-4 US_ 00 = 01 = 10 = 11 = Bit3-0 US_ 000 001 001 001 001 010 010 011 011 01	 24 cycles (11 32 cycles (14 64 cycles (29 128 cycles (5 PER[1:0]: per 144 cycles (6 128 cycles (5 112 cycles (5 88 cycles (40 	ms) ms) ms) 8ms) iod/frequency f 5ms) : 15.4Hz 8ms) : 17.2Hz 0ms) : 20.0Hz ms) : 25.0Hz nimum length o (130ms) (144ms) (158ms) (173ms) (187ms) (202ms) (216ms) (216ms) (230ms) (245ms) (259ms) (288ms) (317ms) (346ms) s (461ms) s (691ms)	hreshold for de	low analog to so						

<u>US_THRES:</u> Ultrasound Threshold Register.

US_THR	ES		0x50000042			0x08		
R/W	R/W	Reserved	R/W	Reserved	R/W	R/W	Reserved	
TX_WF	SMP_CYC2	SMP_CYC1	SMP_CYC0	US_THRES3	US_THRES2	US_THRES1	US_THRES0	
MSB							LSB	

Bit7 TX_WF: Control shape of ultrasound TX waveform

0 = stepped

1 = square

Bit6-4 **SMP_CYC[2:0]**: Controls which of 1/8 period increments to generate the sampling pulse for open/short

detection

Bit3-0 US_THRES[3:0]: Adjust comparator threshold

Ultrasound Threshold Programming							
US_THRES	Threshold (Pct Full Scale)						
0000	0.10 %						
0001	0.15 %						
0010	0.20 %						
0011	0.24 %						
0100	0.30 %						
0101	0.34 % (default High, 0.9% AM mod)						
0110	0.39 % (default Med High, 1.1% AM mod)						
0111	0.59 %						
1000	0.78 % (default Med Low, 2.2% AM mod)						
1001	1.2 %						
1010	1.6 % (default Low, 4.4% AM mod)						
1011	2.3 %						
1100	3.1 %						
1101	4.7 %						
1110	6.3 %						
1111	9.4 %						

US_FILT			0x50000043			0x35					
						0,00					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
RTSEL1	RTSEL0	US_LPF	US_HPF4	US_HPF3	US_HPF2	US_HPF1	US_HPF0				
MSB							LSB				
Bit7-6 RT	SEL[1:0]: Re	eal Time Outp	outs								
00	= STRBI										
01	= I/Q Data										
10 = open/short detect signal (or-ed together)											
11 = US_INT											
Bit5 US	_LPF: Contro	ol low-pass fi	Iter pole freque	ency							
0 =	100 Hz pole	frequency									
1 =	200 Hz pole	frequency									
Bit4-0 US	_HPF[3:0]: (Control high-p	ass pole frequ	uencies							
	Ultraso	und High Pas	s Filter Progra	mming							
		US_HPF[4:0]		Filter 1 Pole (Hz	:)	Filter 2 Pole (Hz))				
		X00XX		11.5							
		X01XX		14.8							
		X10XX		17.8		see below					
		X11XX		21.3							
		0XXXX				<disabled></disabled>					
		1XX00				11.5					
		1XX01		see above		14.8					
		1XX10 17.8							1XX10		
			1XX10 17.8 1XX11 21.3								

<u>US_PLL:</u> Ultrasound Divider Register.

US_PLL			0x50000044			0x4C					
R/W	R/W	R/W	R/W R/W R/W		R/W	R/W	R/W				
US_NX2	US_NX1	US_NX0 US_NF4 US_NF3		US_NF2	US_NF1	US_NF0					
MSB							LSB				
Bit7-5 US_NX[2:0]: Integer portion of feedback divider Bit4-0 US_NF[4:0]: Fractional portion of feedback divider Ultrasound Frequency Programming											
	US_NX[2	:0]	fxo / (4*fus)		Crystal Frequency Range (MHz)						
	000		20 + (US_NF / 32)			3.20 – 3.36					
	001		21 + (US_NF /	32)	3.36 - 3.52						
	010		22 + (US_NF /	32)	3.52 – 3.68						
	011		23 + (US_NF /	32)		3.68 – 3.84					
	100		24 + (US_NF /	32)		3.84 – 4.00					
	101		25 + (US_NF / 32)		4.00 – 4.16						
	110		26 + (US_NF / 32)		4.16 – 4.32						
	111					4.32 – 4.48					

US_SIG: Ultrasound Signal Register.

US_SIG			0x50000046/7		0xXXXX				
R	R	R	R	R	R	R	R		
US_SIG5	US_SIG4	US_SIG3	US_SIG2	US_SIG1	US_SIG0	0	0		
US_SIG13	US_SIG12	US_SIG11	US_SIG10	US_SIG9	US_SIG8	US_SIG7	US_SIG6		
MSB							LSB		
Bit15-2 US_	Bit15-2 US_SIG[13:0]: Snapshot of RSSI								

<u>US_RXFAULT:</u> Ultrasound RX Fault Register.

US_R	XFAU	LT	0x5001800E			0xXX			
Rese	Reserved Reserved		Reserved	Reserved	Reserved	Reserved	R	R	
							USRxOpen	USRxShort	
MSB							LSB		
Bit1	USRxOpen: Ultrasound input open detect status								
	1 = 0	No open detec	ted						
	1 = (Open detected	I						
Bit0	USR	xShort: Ultra	sound input sh	nort detect sta	tus				
	0 = No short detected								
	1 = Short detected								

US_ANATRIM: Ultrasound Analog Trim Register.

US_ANATRI	Μ	0x50018013			0x24				
R/W R/W		R/W	R/W	R/W	R/W R/W		R/W		
USADC_T USGAIN3		USGAIN2	USGAIN1	USGAIN0	USIBIAS2	USIBIAS1	USIBIAS0		
MSB							LSB		
Bit7 USA	Bit7 USADC_T: Ultrasound ADC Test Mode								
0 = n	ormal mode								
1 = te	est mode								
Bit6-3 USG	AIN[3:0]: Cont	trol the third st	age gain of ult	rasound analo	og blocks				
Gain	Gain = USGAIN*0.435 (example : USGAIN[3:0] = 1000, Gain = 8*0.435 = 10.8 dB								
Bit2-0 USIE	USIBIAS[2:0]: Control ultrasound bias current								

8.4 SHOCK SENSOR

The μ Sesame may be used with a simple shock sensor for low cost alarm applications. Pin 43, SHKIN may be used as an input to measure the response of an external shock sensor.

8.4.1 Shock Sensor Usage Description

The $\mu Sesame$ provides sourcing current to the load(shock sensor) and monitors the shock sensor output voltage.

8.4.2 Shock Sensor Related Registers

SHKS	NS		0x50000045			0x04			
R/\	N	R/W	R	R/W	Reserved	R/W	R/W	R/W	
SHK	EN	SHKTRIG	SHKRX	SHKRDY		RSSISEL2	RSSISEL1	RSSISEL0	
MS	B							LSB	
Bit7	it7 SHKEN : Writing one turns on the shock sensor. Read returns one if shock sensor is enabled.								
Bit6 sensor	SHKTRIG: Read returns one if triggered. Writing zero clears the triggered condition of the shock or.								
Bit5	SHK	RX: Reading re	eturns samp	led shock ser	isor receive le	vel			
Bit4	SHK	RDY: Shock S	ensor Ready	ý					
	0 = S	hock Sensor n	not ready						
	1 = S	hock Sensor r	eady						
Bit2-0	RSSI	SEL[2:0]: Sele	ect source fo	or RSSI data					
	000 =	I phase ADC							
	001 =	Q phase ADC	C						
	010 =	010 = I_N phase ADC							
	011 =	Q_N phase A	ADC						
	1xx =	low pass filter	r						

SHKSNS: Shock Sensor Register.

8.5 LIN

The µSesame device contains digital hardware, which implements a LIN 2.0 serial communications interface.

8.5.1 LIN Interface

µSesame implements a LIN (Specification 2.0) interface. Its main characteristics are:

- Configurable for support of both master or slave functionality
- Programmable data rate between 1 Kbit/s and 20 Kbit/s (for master)
- Automatic bit rate detection (for slave)

8.5.1.1 LIN Usage Description

µSesame implements a LIN (Local Interconnect Network) peripheral. This implementation is compatible with the specification 2.0 and allows for the selection of both Master and Slave modes.

The definition of the protocol is beyond the scope of this datasheet and can be found in the following reference: (LIN Consortium)

http://www.lin-subbus.de/index.php?pid=7&lang=en&sid=e10bc3f7d4a021f4e8c083aa02e6e881

8.5.1.1.1 Data Length Control

The host controller has to define the length of the data field of the current LIN frame by adjusting the LINLENGTH register. If the data length bits[3:0] are loaded with the value "1111b" the length of the data field is decoded from Bit 5 and 4 of the identifier register (LINID) according to table below (e.g. compatibility to LIN specification 1.1). Otherwise the amount of data bytes can be written directly to the DATA_LENGTH[3:0] register (supported values are 0...8).

Table 8 - ID bits and number of bits								
ID (Bit 5) ID (Bit 4) Number of Bytes in the data field								
0	0	2						
0	1	2						
1	0	4						
1	1	8						

8.5.1.1.2 Timing Settings for "Wake Up Repeat Time" and "Bus Inactivity Time"

The time for repeating of wake up because of no reaction on the bus and to go to sleep because of inactivity on the bus can be optionally written by the application in registers LINTIMING:

Table 9 - LIN Inactivity Time							
LINIT[1:0] LIN Inactivity Time (sec.)							
00	4						
01	6						
10	8						
11	10						
11	10						

Table 10 - LIN Wake-Up Repeat Time						
LINWPR1 [1:0] LIN Wake-Up Repeat Time (msec.)						
00	180					
01	200					
10	220					
11	240					

8.5.1.1.3 Bit Time Settings

The Bit rate of the LIN system has to be defined in the bit timing registers (LINBITDIV and LINBITMUL). The table below shows an overview of the registers.

Table 11 - LIN Timing Related Registers						
Name	Description	Width(bits)				
LINDIV[8:0]	Bit time divider integer value	9				
LINMUL[4:0]	Bit time multiplier (master only)	5				
LINDFRAC[2:0]	Bit time divider fraction value (master	3				
	only)					

The LIN bit rate *f*bit can be calculated from system clock *f*clk and bit timing registers according to the following equation.

$$Fbit = \frac{Fclk}{2* (LINDIV + LINDFRAC/8)* (LINMUL+1)}$$

The procedure of adjusting the bit timing registers is different between master and slave.

8.5.1.1.4 Bit Timing Register Adjustment of Master

The steps for adjusting the bit timing registers of the master are explained in the following.

1. Setting up the bit time multiplier depending on used LIN data rate *f*bit according to the following equation:

$$LINMUL = \frac{20 \text{KBits/sec}}{Fbit} - 1$$

The value has to be rounded down to the next integer value.

1) Adjusting the bit time divider integer value depending on system clock, data rate and bit time multiplier according to the following equation:

$$LINDIV = \frac{Fclk}{2*(LINMUL+1)*(Fbit)}$$

The value has to be rounded down to the next integer value.

1.0 Adjusting the bit time divider fraction value depending on system clock, data rate, bit time multiplier and bit time divider integer according to the following equation:

$$LINDFRAC = \left(\frac{Fclk}{2*(LINMUL+1)*Fbit} - LINDIV\right)*8$$

The value has to be rounded down to the next integer value.

The table below shows sample values of the bit timing registers for different LIN data rates.

Table 12 - LIN Timing Related Registers									
System Clock	System LIN data rate LINMUL LINDIV LINDFRAC Clock								
	19.2 Kbit/s	0	93	1					
3.58 MHz	9.6 Kbit/s	1	93	1					
	1 Kbit/s	19	89	4					

4

8.5.1.1.5 Bit Timing Register Adjustment of Slave

The steps for adjusting the bit timing registers of the LIN slave are explained in the following paragraphs.

Note: Register fields **LINMUL** and **LINDFRAC** do not exist in the slave. The LIN core slave synchronizes to any bit rate between 1 Kbit/s and 20 Kbit/s. Nevertheless, the bit timing registers have to be adjusted to adapt the LIN core to the used system clock frequency. Adjusting the bit time divider integer value depending on system clock according to the following equation:

$$LINDIV = \frac{Fclk}{40K}$$

For a system clock of 3.58MHz LINDIV = 89.5 = 89. (Always rounded down)

Code Example: To set the LIN interface to operate in Master Mode with a baud rate of 9600baud from a system clock of 3.58MHz: (From Table above)

```
LIN_SetMultDiv ( 1, 93); //Multiplier = 1, divider = 93
LIN_TimingControl ( 4, LIN_INACT4SEC, LIN_WPRPT200MS); // Fract. divider =
```

LIN_MasterSlave (LIN_MASTER); //Lin Master

8.5.1.2 Control of the LIN Module

The first step before transmitting messages with the LIN core is setting up the bit rate of the LIN system. For that, the host controller has to load the bit time registers, which has been explained in the previous sections. After that, the message transfer can be started. Controlling LIN core master and LIN core slave by the application is explained in the following.

8.5.1.2.1 Controlling the LIN Master

The master is responsible for the schedule of the messages. It sends the header of each frame that contains SYNC BREAK FIELD, SYNC FIELD and IDENTIFIER FIELD. The steps for scheduling a message frame are explained in the following.

Code Example: Code segment to load and send a message as master. (8 bytes, enhanced checksum, transceiver active low, message = 0x123456789ABCDEF)

```
LIN_SetID ( 0x10 ); //Set ID of message as 0x10
LIN_Set_Chk_Tran_length (ENHANCED_CHECKSUM, LIN_TRANSCEIVER_ACTIVE_LOW,
8);
LIN_SetMode(LIN_TRANSMIT_ENABLE);
LINDATA->BYTE[0] = 0x12;
LINDATA->BYTE[1] = 0x34;
LINDATA->BYTE[2] = 0x56;
LINDATA->BYTE[2] = 0x56;
LINDATA->BYTE[3] = 0x78;
LINDATA->BYTE[4] = 0x9A;
LINDATA->BYTE[5] = 0xAB;
LINDATA->BYTE[5] = 0xCD;
LINDATA->BYTE[7] = 0xEF;
LIN MasterStartTransmission ();
```

- 1. The following steps have to be done by the application when an interrupt is requested.
- Check the LIN_ERR bit (LINSTATUS). Perform error handling and proceed to step d if bit ERROR is set, otherwise proceed to step b.
- Check the LIN_WAKEUP bit (LINSTATUS) it is set if the master has received or transmitted a wakeup signal. Proceed with the step d if LIN_WAKEUP is set else proceed with step c.
- Check the LIN_CMPLT (LINSTATUS) it is set if the transfer was successful. If LIN_CMPLT is set and the current frame was a receive operation load the received data from the data buffer.
- Set the LIN_RST_INT and LIN_RST_ERROR bits (LINCONTROL) register to reset the interrupt request and the error flags.

Code Example: Interrupt handler that implements above steps:

```
void LIN Handler( void ) // IRQ 9 LIN
{
  if (LIN ERROR & LIN ReadStatus ()) //If an error was detected
  {
        if (LIN_ReadErrors () & LIN_PARITY ERROR) //
        // Process parity error
        }
        if (LIN_ReadErrors () & LIN_TIMEOUT_ERROR)
                                                        11
        // Process timeout error
        }
        if (LIN ReadErrors () & LIN CHECKSUM ERROR)
                                                        11
         {
        // Process checksum error
        }
        if (LIN ReadErrors () & LIN BIT ERROR) //
         {
        // Process bit error
        }
  }
  else //No error
   {
        if ( (LIN WAKEUP & *LINSTATUS) == 0)//If didn't receive nor
                                                  //transmit sleep wake-up
signal
        {
              if ( *LINSTATUS & LIN COMPLETE) //If finished transmitting
              {
              //Process transmission of message completed
              }
        }
  }
  LIN ResetInterrupt(); //Reset interrupt
  LIN ResetError();
                         //Reset error
}
```


8.5.1.2.2 Controlling the LIN Slave

The LIN core slave detects the header of the message frame sent by the LIN master and synchronizes its internal bit time to the master bit time. An interrupt is requested after the reception of the IDENTIFIER FIELD, after the reception of a wakeup signal (if the slave is in sleep mode), when an error is detected or when the message transfer is completed.

The following steps have to be done by the application when an interrupt is requested.

- Check the LIN_DATA_REQ bit (LINSTATUS) (it is 1 when the IDENTIFIER FIELD has been received). Proceed with the following if LIN_DATA_REQ is set else proceed with step 2.
 - Load the identifier from the LINID register and process it.
 - Adjust the **LINTX** bit (1 if the current frame is a transmit operation for the slave, 0 if the current frame is a receive operation for the slave).
 - Load the data length in the **LINLENGTH** register (number of data bytes or value "1111b" if the data length should be decoded from the identifier) and set the checksum type (enhanced or classic).
 - Load the data to transmit into the data buffer (for transmit operation only).
 - Set the LINACK bit (LINCONTROL) register.

Note 1: Steps <u>a</u> thru <u>e</u> have to be done during the IN-FRAME RESPONSE SPACE, if the current frame is a transmit operation for the slave; otherwise a timeout will be detected by the master. If the current frame is a receive operation for the slave, steps <u>a</u> thru <u>e</u> have to be finished until the reception of the first byte after the IDENTIFIER FIELD. Otherwise, the internal receive buffer of the slave core will be overwritten and a timeout error will be detected in the slave core.

Note 2: If the application of the slave detects an unknown identifier (e.g. extended identifier = 0x3E) it has to write a 1 to bit **LIN_SLAVE_STOP** (**LINCONTROL**) instead of setting the **LINACK** bit (steps <u>b</u> thru <u>e</u> can be skipped). In that case the LIN core slave stops the processing of the LIN communication until the next SYNC BREAK is received.

1. Check the LIN_ERR (LINSTATUS). Perform error handling and proceed with step 6 if bit LIN_ERR is set else proceed with step 3.

Note 3: Bit **LIN_TOUT_ERR** and bit **LIN_WAKEUP** are set if the slave has sent a wakeup signal but the master did not respond within 150 ms.

- Check bit LIN_IDL_TOUT (LINSTATUS) is set and activate the sleep mode by setting bit LINSLEEP if it is.
- 3. Check bit LIN_WAKEUP it is set if the slave has received a wakeup signal. If LIN_WAKEUP is set proceed with step 6 else proceed with step 5.

Note 4: Bit **LIN_CMPLT** is not changed when a wake-up signal is transmitted or received. Therefore, bit **LIN_WAKEUP** has to be checked before bit **LIN_CMPLT**.

- Check LIN_CMPLT bit in the LINSTATUS register (it is set if the transmission was successful). If LIN_CMPLT is set and the current frame was a receive operation for the slave, load the received data bytes from the data buffer.
- 4. Set the bits **LIN_RST_INT** and **LIN_RST_ERR** in the control register to reset the interrupt request and the error flags.

Code Example: Processing of an interrupt (slave mode) following above rules, slave transmitting data back to master :(rule between [])

```
void LIN Handler( void )
                                 // IRQ 9 LIN
{
   if (LIN ReadStatus() == LIN DATA REQ )
                                             //[1]
   {
                                  //Check for Extended ID and process if so
         if (*LINID == 0x3E)
[1.a]
         {
               //Process extended ID
               LIN SlaveStop(); //[1.e]
         }
         else
         {
               if (*LINID == ID SEND DATA ) //If some ID of interest
               {
                      LIN SetMode(LIN TRANSMIT ENABLE);
                                                           //[1.b]
                            LIN Set Chk Tran length (ENHANCED CHECKSUM,
                                  LIN TRANSCEIVER ACTIVE LOW, 3);//[1.c]
                                         LINDATA \rightarrow BYTE[0] = 0x12; //[1.d]
                                               LINDATA -> BYTE[1] = 0x34;
                                                     LINDATA ->BYTE[2] = 0x56;
                      LIN SlaveDataAck( LIN SLAVE DATA ACK );//[1.e]
                }
```

```
}
   }
   else
   {
         if (LIN ERROR & LIN ReadStatus ()) //If an error was detected
                                                    //[2/note3]
         {
               if (LIN ReadErrors () & LIN PARITY ERROR) //
               {
               // Process parity error
               }
               if (LIN ReadErrors () & LIN TIMEOUT ERROR)
                                                                11
               {
               // Process timeout error
               }
               if (LIN ReadErrors () & LIN CHECKSUM ERROR)
                                                                11
               // Process chekcsum error
               }
               if (LIN ReadErrors () & LIN BIT ERROR) //
               {
               // Process bit error
               }
               }
         }
         if (LIN ReadStatus() == LIN IDL TOUT ) //[1]
         {
               LIN SetSleep(LIN SLEEP ENABLE);//[3]
         }
         if (LIN ReadStatus() == LIN WAKEUP) //[4]
         {
         //Process wake-up
         }
         else if (LIN ReadStatus() == LIN CMPLT)
                                                    //[5]
         {
               //If transmission completed process it
         }
  LIN ResetInterrupt(); //Reset interrupt [6]
  LIN ResetError();
                           //Reset error
}
```

8.5.1.2.3 Sleep Mode and Wakeup

SEMICONDUCTOR

To reduce the systems power consumption the LIN Protocol Specification defines a Sleep Mode. The message used to broadcast a Sleep Mode request has to be started by the host controller of the LIN core master in the same way as a normal transmit message. The host controller of the LIN core slave has to decode the Sleep Mode Frame from Identifier and data bytes. After that, it has to put the LIN slave node into the Sleep Mode by setting bit **LINSLEEP** in the control register. If bit **LINSLEEP** in the control register of the LIN core slave is not set and there is no bus activity for 4 s to 10 s (specified bus idle timeout) bit **LIN_IDL_TOUT** is set and an

interrupt request is generated. After that application may assume that the LIN bus is in Sleep Mode and set bit **LINSLEEP** in the **LINCONTROL** register of the LIN core slave. The bus inactivity time which should be defined as bus idle timeout for the slave can optionally set to values 4s, 6s, 8s or 10s as possible accordingly with specification 2.0.

Sending a Wakeup signal with the master or any slave node terminates the Sleep Mode of the LIN bus. To send a Wakeup signal, the host controller of the LIN core has to set the bit **LIN_WAKEUP** in the **LINSTATUS** register. After successful transmission of the wakeup signal with the LIN core master the **LIN_WAKEUP** bit in the **LINSTATUS** register of the sending LIN core master is set and an interrupt request is generated. The LIN core slave does not generate an interrupt request after successful transmission of the Wakeup signal but it generates an interrupt request if the master does not respond to the Wakeup signal within 150 msec. to 250 msec. This value can be set optionally to 180ms, 200ms, 220ms or 240ms as it is possible accordingly with specification 2.0. In that case, bit **LIN_ERR** and bit **LIN_TOUT_ERR** are set. The host controller has to decide whether to transmit another Wakeup signal or not.

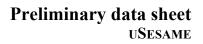
All LIN cores that detect a wakeup signal will set the bit LIN_WAKEUP and generate an interrupt request to their host controller. The inverted bit LINSLEEP is connected to the output LIN_TR_EN. Bit LINSLEEP is automatically reset and LIN_TR_EN (whose polarity can be flipped by setting/clearing LINTRAN) is set to high when the LIN core detects a wakeup signal. Output LIN_TR_EN may be used for connecting the enable signal of the LIN transceiver. It depends on the transceiver type whether this is possible or not.

8.5.1.2.4 Error Detection and Handling

The LIN core generates an interrupt request and stops the processing of the current frame if it detects an error. The application has to check the type of error by processing the LINERROR register. After that, it has to reset the LINERROR register and the LIN_ERR bit in status register by writing a 1 to bit LIN_RST_ERR in control register. Starting a new message with the LIN core master or sending a Wakeup signal with master or slave is possible only if bit LIN_ERR in LINSTATUS register is 0.

8.5.1.3 LIN Registers

The following registers are available:


LIN_DA	TAn	0x5000	0030/1/2/:	3/4/5/6/7	0x00				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
LDT7	LDT6	LDT5	LDT4	LDT3	LDT2	LDT1	LDT0		
MSB	MSB I				LSB				
Bit7-0	Bit7-0 LDT7-LDT0: LIN data bits								

LIN_DATAn: LIN data registers. (n = 0, 1, ..., 7)

LINCTRL: LIN control register.

LINCT	RL		0x50000	038		0x00			
W	R/W	R/W	R/W	W	W	R/W	R/W		
LINST	OP LINSLEEP	LIN_WKUP_ REQ	LIN_START_F EQ						
MSE	SB LSB								
	LINSTOP: LIN Sto t interrupt and canno se the LIN slave stop 0 = No action	t make use	of the frame	content with the re		(e.g. extende	data d identifiers). Fo AK is detected.		
	1 = STOP								
Bit6	LINSLEEP: LIN SI Mode or not. The timeout interrupt is	application	has to set t	he bit after sending	g or receiving a Sl	eep Mode fram	e or if a bus idle		
	0 = LIN interface is		•						
	1 = LIN interface is	in sleep m	ode						
Bit5	LINTX: LIN transm frame for the LIN n				the current frame	is a transmit fra	ame or a receiv		
	0 = LIN interface is	receiving							
	1 = LIN interface is transmitting								
Bit4	LINACK: LIN data request interrupt (c								
	0 = Acknowledge r	not request	ed or already	reset by core					
	1 = LIN interface a	cknowledge	e request						
Bit3	LIN_RST_INT: LIN the LINSTATUS re		rrupt: The ap	oplication has to wi	rite a '1' to this bit	to reset the LIN	I_INT_REQ bit i		
	0 = No Interrupt reset request								
	1 = Reset of interru	upt request							
Bit2	LIN_RST_ERR: LI	N reset err	or: The appli	cation has to write	a '1' to this bit				
	to reset the error b	its in status	register and	l error register.					
	0 = No errors reset	t request							
	1 = Errors reset red	quest							
Bit1	LIN_WKUP_REQ:	LIN Wake	-Up request:	The bit has to be s	et by the application	on to			
	terminate the Slee	p Mode of t	he LIN bus b	y sending a Wake	up signal. The bit v	vill be reset by	the LIN core.		
	0 = No wake-up re	quest							

Bit0 LIN_START_REQ: LIN start request (master only):

The bit has to be set by the application to start the LIN transmission after loading Identifier, data length and data buffer. The LIN core will reset the bit after the transmission is finished or an error is occurred.

0 = No action

1 = Start Transmission

LINSTATUS: LIN status register.

LINSTATUS		0x50000039			0x00		
W	R/W	R/W	R/W	W	W	R/W	R/W
LINACTIVE	LIN_IDL_TOUT	LINABRT	LIN_DT_ REQ	LIN_INT_ REQ	LIN_ERR	LIN_WAKEUP	LIN_CMPLT
MSB							LSB

Bit7 LINACTIVE: LIN active: The bit indicates whether the LIN bus is active or not.

1 = Transmission on the LIN bus is active

0 = No LIN bus activity

<u>Note</u>: For the LIN slave, this bit is set after the detection of a correct SYNC BREAK / SYNC FIELD sequence and it is reset at the end of the transmission or if the processing of the current frame is stopped by the host controller.

Bit6 LIN_IDL_TOUT: LIN idle timeout (slave only):

This bit is set by the LIN core if bit LINSLEEP in control register is not set and no bus activity is detected for 4 s. In addition, an interrupt request is generated in that case. After that, the application may assume that the LIN bus is in sleep mode and it has to set bit LINSLEEP in the LINCTRL register.

0 = NO sleep mode condition detected

1 = Sleep mode condition detected

Bit5 LINABRT: LIN aborted (slave only):

This bit is set by the LIN core slave if a transmission is aborted after the beginning of the data field due to a timeout or bit error (caused e. g. by a new sync break after missing data bytes). The bit is also set if the processing of the current frame has been stopped by writing a '1' to bit STOP in control register. The bit is cleared by the LIN core after receiving a correct SYNC BREAK / SYNC FIELD sequence.

0 = LIN transmission NOT aborted

1 = LIN transmission aborted

Bit4 LIN_DT_REQ: LIN data request (slave only):

The LIN core slave sets the bit after receiving the Identifier and sends an interrupt to the host controller. The application has to decode the Identifier to decide whether the current frame is a transmit or a receive operation. It has to adjust the LINTX bit in the control register and to load the data length. For transmit operations it has to load the data buffer too. After that the host controller has to set the bit LINACK in the control register.

- 0 = No data requested
- 1 = Data requested

Preliminary data sheet USESAME

Inde

Bit3	LIN_INT_REQ: LIN interrupt request:
	The LIN core sets the bit when it sends an interrupt. The bit has to be reset by the application by setting the bit LIN_RST_INT in the control register.
	0 = No Interrupt request
	1 = Interrupt requested
Bit2	LIN_ERR: LIN error:
	The LIN core sets the bit if an error has been detected (compare error register). The bit has to be reset by the host controller by setting the bit LIN_RST_ERR in the control register.
	0 = No errors
	1 = Errors detected
Bit1	LIN_WAKEUP: LIN Wake-up:
	The bit is set when the LIN core is transmitting a Wake-up signal or when the LIN core has received a Wakeup signal.
	0 = No wake-up
	1 = Wake-up signal
Bit0	LIN_CMPLT: LIN complete:
	The LIN core will set the bit after a transmission has been successfully finished and it will reset it at the start of a transmission.
	0 = Transmission started
	1 = Last transmission succeeded

LINERROR: LIN error register.

LINERROR		0x500003A			0x00		
Reserved	Reserved	Reserved Reserved R			R	R	
-	-	-			LIN_TOUT_ ERR	LIN_CHK_E RR	LIN_BIT_ERR
MSB							LSB

Bit3 LIN_PARITY_ERR: LIN parity error: Identifier parity error. (Slave only)

0 = No parity error identified

1 = Parity error identified

Bit2 LIN_TOUT_ERR: LIN timeout error: There are several reasons that can cause a timeout error: The master detects a timeout error if it is expecting data from the bus but no slave does respond. If the slave responds to late and the frame is not finished within the maximum frame length TFRAME_MAX a timeout error will be detected too. The slave detects a timeout error if it is requesting a data acknowledge to the host controller (for selecting

receive or transmit, data length and loading data) and the host controller does not set the bit DATA_ACK or bit STOP in control register until the end of the reception of the first byte after the identifier. The slave detects a timeout error if it has transmitted a wakeup signal and it detects no sync field (from the master) within 150 ms.

0 = No timeout error

1 = Timeout error detected

<u>Note</u>: The slave does not perform an exact check of the frame length TFRAME_MAX but a timeout is detected after 200 bit times if the slave is in receive mode and there are missing data fields or a missing ID field from the master.

Bit1 LIN_CHK_ERR: LIN checksum error:

0 = No checksum error

1 = Checksum error

Bit0 LIN_BIT_ERR: LIN bit error: The bit transmitted does not match the one read.

0 = No bit error

1 = Bit error

LINSTATUS		0x500003B			0x00				
R/W	R/W	Reserved	Reserved	R/W	R/W	R/W	R/W		
LINCHK	LINTRAN	-	-	LINDLEN3	LINDLEN2	LINDLEN1	LINDLEN0		
MSB							LSB		
Bit7 LINCH	Bit7 LINCHK: LIN checksum:								

0 = Classic Checksum

1 = Enhanced Checksum

- Bit6 LINTRAN: LIN transceiver enable polarity:
 - 0 = Transceiver enable signal active high
 - 1 = Transceiver enable signal active low

Bit3-0 LINDLEN: LIN data length:

The application has to define the length of the data field of the current LIN frame by adjusting the LINDLEN[3:0] bits. If the bits are loaded with the value "1111b" the length of the data field is decoded from Bit 5 and 4 of the identifier register "id" according to the table below (e.g. compatibility to LIN specification 1.1). Otherwise the amount of data bytes can be written directly to the register (supported values are 0...8).

Table 13- LIN data length (when the length bits have the value "1111b")								
ID Bit 5	ID Bit 4	Number of Bytes						
0	0	2						
0	1	2						
1	0	4						
1	1	8						

LINBITDIV: LIN Bit Divider

LINBITDIV			0x5000003C		0x00					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
LINDIV7	LINDIV6	LINDIV5	LINDIV4	LINDIV3	LINDIV2	LINDIV1	LINDIV0			
MSB							LSB			
Bit7-0 LIND	Bit7-0 LINDIV[7:0]: LIN bit divider.									

LINBITMUL: LIN Bit Divider

LINBITMUL			0x5000003D		0x7F				
Reserved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W		
-	-	LINMUL4	LINMUL3	LINMUL2	LINMUL1	LINMUL0	LINDIV8		
MSB							LSB		
Bit5-1 LINMUL[4:0]: LIN bit multiplier: Bit0 LINDIV[8]: LIN divider bit8									

LINID: LIN ID.

LINID		0x5000003E			0x00			
Reserved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W	
-	-	LINID5	LINID4	LINID3	LINID2	LINID1	LINID0	
MSB							LSB	
Bit5-0 LIN	ID[5:0]: LIN i	d.						

LINTIMING: LIN timing.

LINTIMIN	IG	(0x5000003F			0x00				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
LINMS	LINDFRAC2	LINDFRAC1	LINDFRAC0	LINIT1	LINIT0	LINWPR1	LINWPR0			
MSB							LSB			
Bit7	Bit7 LINMS: LIN Master/Slave selection:									
	0 = Slave									
	1 = Master									
Bit6-4	LINDFRAC[2:0]:	LIN fractional divi	der.							
Bit3-2	2 LINIT[1:0]: LIN inactive time.									
Bit1-0	LINWPR[1:0]: LIN	I wake-up repeat	time.							

8.6 UART

µSesame implements a UART (Universal Asynchronous Receiver Transmitter) module. The main characteristics are defined below:

- Four bytes deep reception FIFO (First In First Out) with "watermark" selectable to one and three bytes
- Four bytes deep transmission FIFO (First In First Out)
- Interrupt available for transmission, reception and error events
- Reception timeout timer
- Programmable break reception and transmission
- Programmable parity with "sticky" parity option
- Selectable number of bits from 5 to 8
- Selectable number of stop-bits: 1, 1 ¹/₂, 2
- Programmable loop-back
- Swappable TXD and RXD (PD[4] and PD[5])
- Transmitter Polarity selection

8.6.1 UART Operation

The UART protocol requires two wires (UTXD and URXD). Port D[5:4] are configured as UTXD and URXD when the MDUART bit is set in PORTEOE register. In order to use it the following steps must be followed:

1. Select the pins position (normal or swapped) of the interface and also its polarity. The normal position (not swapped) is TX=PD[5] and RX = PD[4].

Code Example: Selecting UART with normal polarity and swapped: (UART pins swapped: TX=PD[4] and RX = PD[5])

UART_Setup(UARTSWAP_EN, UARTPOL_NORMAL);

2. Define the following parameters:

- a. Loop back: Used mainly in tests, internally connects the output to the input.
- b. Break enable: Puts the output down while asserted, rising the output once de-asserted.
- c. Sticky parity: Forces the parity to stay stable in one direction.
- d. Even/Odd parity selection and enable: Selection and enable of Even or Odd parity bits.
- e. Number of stop bits: Selection of 1 (default), 11/2 (5-bit communications only) or 2 stop bits.
- f. Data size in bits (5,6,7,8): Selection of the number of bits used in the communication

Code example: Setting the above parameters: (no loop-back, no break signal, no sticky parity, no parity, one stop-bit, 8-bit communications)

UART_Ctrl(UART_LBDIS, UART_BREAKDIS, UART_STPDIS, UART_ODDEN, UART_PARDIS, UART_10STOP, UART_8BITS);

3. Define the baud rate. The baud rate is calculated as follows: (UARTDIV is a 16-bit register)

$$Baud = \frac{Fclk}{16* (UARTDIV + 1)}$$

Assuming a 3.579545MHz system clock the following table provides some register values, baud rates and related errors:

Table 14 - UART baud rates, divider values and errors									
Baud	UARTDIV	Real Baud	Error (%)						
300	745	299.9	0.04						
600	372	599.8	0.04						
1200	185	1203	0.23						
2400	92	2406	0.23						
4800	46	4760	0.83						
9600	22	9727	1.3						
19200	11	18644	2.9						
38400	5	37287	2.9						
57600	3	55930	2.9						
115200	1	111861	2.9						

Code Example: Setting the UART to operate at 9600 baud:

UART_BaudRateDivider(22);

4. Enable the UART and its interrupt: The UART may generate an interrupt for events related to:

- 1. Transmission completed.
- 2. Reception: Timeout of ~40 bit-times without reception, and data received (one or three bytes received, programmable).
- 3. Errors detected: Framing error, parity error, and overrun error.
- 4. Break signal detected (received).

Code example: Enabling the UART with no timeout interrupts, errors, transmission and reception interrupts with interrupts once 3 bytes are received in the FIFO.

//Timeout interrupt disabled, Error enabled, TX enabled, RX enabled

UART_Interrupt_Control(UART_TOUTDIS,UART_ERREN,UART_TXEN,UART_RXEN);

//UART enabled, receive interrupt after 3 bytes received, reset RX FIFO and TX //FIFO.

UART Ctrl1(UARTEN, UART INT3, uint8 t tfr, uint8 t rfr);

//Enabling interrupt from UART at the microcontroller

NVIC EnableIRQ(UART IRQn); //Enable UART interrupt

5. Processing of the UART interrupt:

```
void UART Handler( void ) // IRQ 8 UART
{
      switch(UART Interrupt Status())
           case UART ERROR:
                 //Process reception error here
                 SWITCH(UART CheckError())
                  {
                        case UART FRAMING ERROR: // Process this error here
                             break;
                        case UART PARITY ERROR: // Process this error here
                             break;
                        case UART OVERRUN ERROR: // Process this error here
                             break;
                       case 0: // No error, exit
                       default:
                             break;
                  }
```



```
break;
            case UART_RXRDY:
                  //Process data received
                  mydata = *UARTDATA; //Read data received by uart into
mydata
                  break;
                 UART TIMEOUT:
            case
                  //Process reception timeout
                  break;
            case UART TXDONE:
                  //Process transmission complete
                  break;
            case UART NOINT: //No int.
            default:
            //If no interrupt asserted or something else happened nothing to do
                       break;
      }
}
```

8.6.2 UART Registers

The following registers are defined in μ Sesame:

UARTDATA:	UART	data.
-----------	------	-------

UARTDATA			0x50000010		0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
UARTD7	UARTD6	UARTD5	UARTD4	UARTD3	UARTD2	UARTD1	UARTD0
MSB							LSB
Bit7-0 UAI	RTD [7:0]: UA	ART data, bot	h received ar	nd to be trans	mitted.		

UARTICR: UART Interrupt Control Register.

	UARTICR: UART Interrupt Control Register.									
UARTI	CR		0,30000011				0x00			
R		R	R	R	R/W	R/W	R/W	R/W		
UISTI	rs3	UISTTS2	JISTTS2 UISTTS1 UISTTS0 UTOUTIEN URXERREN UTXIEN		URXIEN					
MSI	В		LSB							
Bit7-4	4 UISTTS [3:0]: UART Interrupt status:									
	000	1 = No Interru	pt asserted							
	0010) = Transmiss	sion complete	d						
	010) = Data rece	ived							
) = Reception								
	0110		enor							
	1100) = Reception	timeout (~40	bit-time)						
Bit3	UTC	UTIEN: UAR	T time-out inte	errupt enable	bit:					
	0 = -	Time-out inter	rupt disabled							
	1 = 1	Time-out inter	rupt enabled							
Bit2	URX	(ERREN: UA	RT reception of	error interrupt	enable bit:					
	0 = I	Reception err	or interrupt di	sabled						
	1 =	Reception err	or interrupt er	abled						
Bit1	UTX	(IEN: UART tr	ansmission c	ompleted inte	rrupt enable bit	t:				
	0 = -	Transmission	completed int	terrupt disable	ed					
	1 = 1	Transmission	completed int	terrupt enable	ed					
Bit0	URX	(IEN : UART r	eception inter	rupt enable b	it:					
	0 = 1	Reception inte	errupt disable	d						
	1 = Reception interrupt enabled									

UARTCTRL: UART Control Register.

UART	CTRL			0x50000012			0x00	
R/\	N	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ULOOPEN UBREAK		UBREAKE N	USTICKEN	UPARITY	UPAREN	USTOP	USTOP	USIZE
MS	SВ							LSB
Bit7	ULO	OPEN: UART I	oop back enab	le:				
	0 = U	ART loop back	disabled					
	1 = U	ART loop back	enabled					
Bit6	UBREAKEN: UART break enable:							
	0 = UART break disabled							
	1 = UART break enabled							
Bit5	USTICKEN: UART sticky parity enable bit:							
	0 = S	ticky parity disa	abled					
	1 = S	ticky parity ena	abled					
Bit4	UPAF	RITY : UART pa	arity bit:					
	0 = O	dd parity						
	1 = E	ven parity						
Bit3	UPAF	REN : UART pa	rity enable bit:					
	0 = P	arity disabled						
	1 = P	arity enabled						
Bit2	USTO)P : UART stop	bit:					
	0 = O	ne stop bit						
	1 = If	a 5-bit transmi	ission it selects	1.5 stop bits, c	otherwise 2 stop	o bits (6, 7 and	8 bits)	
Bit1-0		E: UART trans	mission size:					
		5-bit data						
		6-bit data						
		7-bit data						
	11 = 8	3-bit data						

UARTCTRL1: UART Control Register1.

UART	UARTCTRL1			0x50000013		0x00				
Rese	erved	Reserved	Reserved	Reserved	R/W	R/W	R/W	R/W		
	-	-	-	-	UARTEN	URXFS	UTXFRST	URXFRST		
M	SB							LSB		
Bit3	3 UARTEN : UART enable:									
	0 = UART disabled									
	1 = U	ART enabled								
Bit2	URXI	-S: UART RX I	FIFO interrupt	evel:						
	0 = U	ART interrupts	after one byte	received						
	1 = U	ART interrupts	after three byt	es received						
Bit1	UTXF	RST : UART tr	ansmission FIF	O reset bit:						
	0 = T	X FIFO not res	et							
	1 = T	X FIFO reset								
Bit0	URX	FRST : UART re	eception FIFO	reset bit:						
	0 = R	X FIFO not res	set							
	1 = R	X FIFO reset								

<u>UARTDIV</u>: UART Baud rate divider. (16-bit)

UARTDIV			0x50000016			0x0000		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
UDIV7	UDIV6	UDIV5	UDIV4	UDIV3	UDIV2	UDIV1	UDIV0	
UDIV15	UDIV14	UDIV13	UDIV12	UDIV11	UDIV10	UDIV9	UDIV8	
MSB							LSB	
Bit15-0 UDI	/ [15:0]: UAR	T clock divide	er					

UARTSTATUS: UART Control Register1.

UARTSTATUS		0x50000014			0x00						
R/W		R/W	R/W	R/W	R/W	R/W	R/W	R/W			
UERR		UTXEMPT Y	UTXFFEMP TY	UBREAKIN T	UFRMERR	UPRTYER R	UOVRUNE RR	UDTRDY			
MSB								LSB			
Bit7	UERR: UART error:										
	0 = N	o error									
	1 = E	1 = Error in UART									
Bit6	UTXE	UTXEMPTY: UART transmission empty:									
	0 = UART transmitter not empty										
	1 = UART transmitter empty										
Bit5	UTXFFEMPTY: UART transmission FIFO empty:										
	0 = TX FIFO not empty										
	1 = TX FIFO empty										
Bit4	UBRI	UBREAKINT: UART break interrupt:									
		0 = No break interrupt									
	1 = Break interrupt										
Bit3		UFRMERR: UART framing error:									
		ART no framin	-								
DYA	1 = UART framing error										
Bit2		UPRTYERR : UART parity error: 0 = No parity error									
Bit1	1 = Parity error UOVRUNERR: UART overrun error:										
ыц	0 = No overrun error										
			1								
Bit0	1 = Overrun error UDTRDY: UART data ready:										
Ditt		o data ready (r	-								
		ata ready (rece									

8.7 SPI INTERFACE

The Serial Peripheral Interface (SPI) is a synchronous full-duplex serial interface. It communicates in master/slave mode where the master initiates the data transfer. In μ Sesame, the SPI is implemented as a master. The module is compatible with Motorola SPI interface. There are many references available, and one of them is:

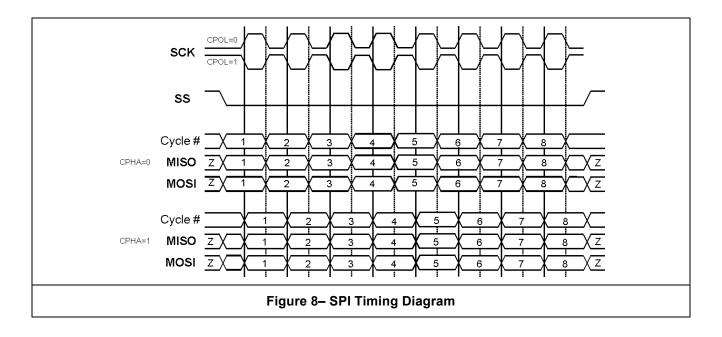
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

µSesame SPI module's main features are defined below:

- Compatible with Motorola SPI interface
- Four bytes deep reception FIFO
- Four bytes deep transmission FIFO
- Interrupt upon events related to transmission, reception and error:
 - Write Collision
 - Transmission FIFO full and empty
 - Reception FIFO full and empty

The SPI protocol requires four wires (SCK, MISO, MOSI, and SS). Port D[3:0] are configured as the SPI bus when the MDSPI bit is set in PORTEOE register. The following table describes how each pin is connected:

Table 15 : SPI interface signals									
Name	Pin Number	Pin Name	Comments						
MISO	18	PD0	3.3V						
MOSI	19	PD1							
SCLK	20	PD2							
SS (SPI-SSEL)	21	PD3							


8.7.1 SPI Functionality

Only the master mode is implemented in μ Sesame. μ Sesame configures the clock frequency and generates the serial clock (SCK) for the interface. The data transfer is synchronous through SCK. The SPI is a full-duplex system; data is transmitted and received simultaneously. μ Sesame sends the information to the slave device through MOSI line and receives the data through MISO line. CPOL and CPHA bits determine when to sample the data.

When CPOL=0, the base value of clock is logic '0'. In this case, if CPHA=0, data is captured on the rising edge of SCK and data is propagated on the falling edge of SCK. For CPHA=1, data is captured on the falling edge of SCK and data is propagated on the rising edge of SCK.

If CPOL=1, the base value of clock is logic '1'. In this case, if CPHA=0, data is captured on the falling edge of SCK and data is propagated on the rising edge of SCK. For CPHA=1, data is captured on the rising edge of SCK and data is propagated on the falling edge of SCK.

The timing diagram is shown below.

After a desired configuration is set through configuration registers, a transfer is initiated by writing to the Serial Peripheral Data Register (SPDR). The data is entered to 4-deep FIFO before it is actually transmitted. When the data is transmitted, the slave also transmits the data simultaneously for µSesame to receive. The received data is stored in a separate 4-deep FIFO. The data is accessed by reading SPDR register.

To operate it properly the following steps must be performed:

1. Configure and enable the SPI: Select if the interrupt is enabled, polarity, phase and the clock divider:

Code Example: Enabling the SPI interface with interrupt enabled, clock polarity negative (base value = 0), phase1 (data captured on the clock's falling edge and propagated on the rising edge), and divider = 2.

```
SPI_Config(SPI_INT_EN,SPI_EN,SPI_CPOL_NEG,SPI_PHASE1,2);
```


2. Enable the interrupt (microcontroller) if required:

Code Example:

//Enabling interrupt from SPI at the microcontroller

NVIC_EnableIRQ(SPI_IRQn); //Enable SPI interrupt

3. Process Interrupt if required: Detect reason for the interrupt (error, transmission or reception related and act accordingly):

Code Example: Processing SPI interrupt:

```
void SPI Handler( void )
                                   // IRQ A SPI
{
      uint8 t status;
      if ( (status = SPI ReadStatus() ) & SPI INT FLAG )
            if (status == SPI WCOL)
            {
            //Process write collision (data is written to the SPI data
            //register while a SPI data transfer is in progress)
            if (status == SPI TX FIFO FULL)
            //Process Transmission FIFO full
            if (status == SPI TX FIFO EMPTY)
            //Process end of transmission of data previously
            //in transmission FIFO
                  *SPIDATA = outdata[j++];
                  *SPIDATA = outdata[j++];
                  *SPIDATA = outdata[j++];
            }
            if (status == SPI RX FIFO FULL)
            {
            //Process reception FIFO full, normally by reading
            //all bytes of data
                  for ( i = SPI ReadRxFifoSize(); i > 0; i--)
                        mydata[i++] = *SPIDATA;
            //OTher processing here
            if (status == SPI RX FIFO EMPTY)
            //Process when no more information is available (received)
            }
      }
}
```


8.7.2 SPI Registers

The following registers are defined in the SPI interface:

SPCR: SPI Control Register.

SPCR		0x8	5000001C			0x10				
R/W	Reserved	Reserved	R	R/W	R/W	R/W	R/W			
SINTE	-	-	MSTR	CPOL	SPH	SCKSTD1	SCKSTD0			
MSB							LSB			
Bit7	7 SINTE: SPI Interrupt enable									
	0 = Interrupt is disabled									
	1 = Interrupt is enabled									
Bit4	MSTR: Master Mode Select Bit									
	SPI is always in master mode in µSesame, and therefore, it is always set to logic '1'.									
Bit3	CPOL SPI cloc	k polarity								
	0 = The base v	alue of the clo	ck is zero							
	1 = The base v	alue of the clo	ck is one							
Bit2	CPHA: SPI cloo	ck phase								
	0 = data is cap n to base	tured on clock	transition	from base	and data	a is propagated	d on the clock			
	1 = data is captured on clock transition to base and data is propagated on the clock transition from base									
Bit1-0	-0 SCKSTD[1:0]: SPI standard clock divider selection									
	Please refer to	SPER registe	r for syster	n clock						

SPSR: SPI Status Register.

SPSR		()x5000001D		0x00			
R/W	R/W	Reserved	Reserved	R/W	R/W	R/W	R/W	
SINTF	SWCOL	-	-	STXFF	STXFE	SRXFF	SRXFE	
MSB							LSB	

		•
Ir		
	SEMICON	IDUCTOR

Bit7	SINTF: SPI interrupt flag
	0 = Interrupt not asserted
	1 = Interrupt asserted
Bit6 transm	SWCOL: SPI write collision is set when the SPDR register is written to while the nit FIFO is full
	0 = No collision
	1 = collision
Bit3	STXFF: SPI transmit FIFO full
	0 = transmit FIFO not full
	1 = transmit FIFO full
Bit2	STXFE: SPI transmit FIFO empty
	0 = transmit FIFO not empty
	1 = transmit FIFO empty
Bit1	SRXFF: SPI reception FIFO full
	0 = reception FIFO not full
	1 = reception FIFO full
Bit0	SRXFE: SPI reception FIFO empty
	0 = reception FIFO not empty
	1 = reception FIFO empty

SPDR: SPI Data Register.

SPDR		C		0xXX			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
SPID7	SPID6	SPID5	SPID5 SPID4 SPID3 S		SPID2	SPID1	SPID0
MSB							LSB
Bit7-0 SPID	[7:0]: SPI data	, used in both t	transmissic	on and receptio	n		

SPER: SPI Extended Register

SPER			0x5000001F				0x00				
R/W	,	R/W	Reserved	Reserved	Reserved	R/W	Reserved	Reserved			
SICNT1 SINCT0		SINCT0	-	-	-	SPE	SCKEXT1	SCKEXT0			
MSB								LSB			
Bit7-6	SICN	T[1:0]: SF	PI Interrupt Co	unter Bits				L			
	00 = SINTF is set after every completed transfer										
	01 = \$	SINTF is s	set after every	two completed	d transfers						
	10 = \$	SINTF is s	set after every	three complete	ed transfers						
	11 = \$	SINTF is s	set after every	four complete	d transfers						
Bit2	SPE:	SPI Enab	le								
	0 = SPI module is disabled										
	1 = S	PI module	e is enabled								
Bit1-0	SCKE	EXT[1:0]:	SPI extended	clock divider							
	SCKS	STD	SCKEXT	Result Clock Divider							
	00		00	= System (= System Clock/2						
	01		00	= System (Clock/4						
	10		00	= System (Clock/16						
	11		00	= System (Clock/32						
	00		01	= System (Clock/8						
	01		01	= System (Clock/64						
	10		01	= System (Clock/128						
	11		01	= System (Clock/256						
	00		10	= System (Clock/512						
	01		10	= System (Clock/1024						
	10		10	= System (Clock/2048						
	11		10	= System (Clock/4096						
	хх		11	= Reserved	b						

8.8 I²C INTERFACE

 μ Sesame implements an I²C interface. Its main characteristics are:

- Support for multi-master mode
- General call support
- 10-bit address
- Address masking

The I²C interface is a well-known interface and many references that describe its behavior are available. As an example:

http://en.wikipedia.org/wiki/I%C2%B2C

8.8.1 I2C Functionality

µSesame's I²C must be configured for proper use.

8.8.1.1 Slave Mode

Slave Mode:

1. Select the peripheral as slave. Code Example:

I2C_Mode(I2C_SLAVE);

2. Select the address size. Code Example selecting 7-bit address size:

```
I2C Slave Sets Address Size ( 7 BIT ADDRESS );
```

3. Load the address. Code example loading 0x7A as address:

I2C_WriteAddress(0x7A);

4. Select if general call is to be supported. Code example disabling general call:

I2C Slave Enable General Call (GC OFF);

5. Select address masking if required. If required the peripheral provides a 5-bit address mask for the lower 5 address bits. Each bit masks the corresponding bit in address comparison when set. For example, as an I²C Slave in 7-bit address mode is using 0x03 as mask and 0x36 as address Then the I²C will answer to all messages with addresses 0x34, 0x35, 0x36 or 0x37. Code example selecting 0x03 as mask:

```
I2C Slave Address Mask ( 0x03 );
```

6. Enable the interface and its interrupts if used. Code example:

```
I2C_Enable( I2C_ON );//Enabling the interface
```

NVIC_EnableIRQ(I2C_IRQn); //Enable I2C communications

interrupt

```
NVIC EnableIRQ( I2C Collision IRQn ); //Enable I2C collision interrupt
```

7. Define the Interrupt handlers if required. Code example:


```
void I2C_Collision_Handler( void )//
{
     //Collision handling code
}
void I2C_Handler( void )//
{
     //Communications code
}
```

In the following paragraphs the several phases of the slave side of the communications will be described.

8.8.1.1.1 I²C Slave Access Sequence

Note: I²C address phases are always prefixed by Start or Repeated Start condition.

7-bit Address mode

The slave, once enabled, waits for an I^2C Start condition to happen. Once a Start condition is detected, the slave shifts in the next 8 bits into an internal shift register and the following actions take place:

The IBUFF bit is set.

If the address contained in the internal register matches the one from **I2CADDR0** the interface sends back an ACK and an interrupt is asserted.

At this moment the application must read the **I2CSTATUS** register and check the **IADDRR** and **IRWBUSY** bits.

The IADDRR should be '1' (address received).

The **IRWBUSY** will inform if the operation is a write ('1') or a read ('0').

After reading these bits the application must read the **I2CDATA** register to clear the buffer. The figures 1, 2 and 3 show how the process occurs.

If **IBUFF** is set before receiving the address or **IRBUFOVL** is set when receiving the address, then the slave will send NACK and issue an error interrupt to notify the application about these errors.

10-bit Address mode

Two address-byte receptions are required in this mode. The first byte shifted consists of '1 1 1 1 0 A[9] A[8] 0', where A[9:8] is the upper two bits of I^2C address.

The last bit, R1W0, must be 0 so the slave can receive another address byte. If the upper two address bits match then the Slave sends the ACK and asserts an interrupt.

The application must at this point read **I2CSTATUS** to check the **IADDRR** and **IRWBUSY**, which are 1 (address byte) and 0 (write operation). The user then needs to read **I2CDATA** to clear the buffer.

The second byte shifted into contains the address bits A[7:0]. In the same fashion if the lower 8 address bits match then the slave sends the ACK and asserts an interrupt.

The application reads **I2CSTATUS** to check the **IADDRR**, which is 1 (address byte). The user then needs to read **I2CDATA** to clear the buffer. Figure 12 shows an example of 10-bit address mode receiving timing waveform.

If it is an I²C read access, then after the two address-byte receptions the slave shall receive a Repeated Start condition and then the first address byte again with last bit R1W0 being 1. The slave sends The ACK bit and asserts an interrupt

The application reads **I2CSTATUS** to check **IBUFF** and **IRWBUSY**, which are 1 (address byte) and 1 (read operation). The user then needs to read **I2CDATA** to clear the buffer.

(Figure 13 shows an example of 10-bit address mode transmitting timing waveform.)

8.8.1.1.2 *I*²C Access Sequence – Write Data Phase

If the received R1W0 field is 0, it is an I²C write access and the slave remains in receiving mode. Every time the slave shifts in a byte, it sends the ACK bit as long as **IBUFF** is cleared before receiving the data and **IRBUFOVL** is cleared when receiving the data.

The slave also asserts an interrupt after receiving each byte from I^2C bus. The user needs to read **I2CSTATUS** for status checking and Then **I2CDATA** for data fetching. The write data phase is concluded when detecting a Stop or Repeated Start condition. (Figure 9, Figure 10, and Figure 12 show examples of I^2C write accesses)

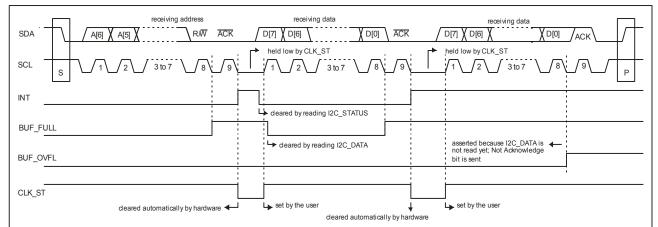


Figure 9 – Slave Mode Timing Waveform with CLK_ST_ENB = 1 (Reception, 7-bit Address Mode)



Figure 10 – Slave Mode Timing Waveform with CLK_ST_ENB = 0 (Reception, 7-bit Address Mode)

8.8.1.1.3 I²C Access Sequence – Read Data Phase

If the received R1W0 field is 1, it is an I^2C read access and the slave switches to transmitting mode.

Before each byte shift out process, **ICLKSTR** is cleared automatically to hold SCL low (clock stretching). The user needs to program **I2CDATA** with the byte to be transmitted and then set **ICLKSTR** to release SCL. Every time the slave shifts out a byte, it receives the ACK/NACK bit. If receiving the ACK bit, the slave clears **ICLKSTR** automatically, and the user needs to program **I2CDATA** and set **ICLKSTR** to resume transmission. If receiving the NACK bit, which means the Master device is done reading data, the Slave releases both SCL and SDA. The Slave asserts an interrupt after receiving the ACK/NACK bit. The read data phase is concluded when receiving the NACK bit or detecting Repeated Start or Stop condition. Figure 11 and show examples of I²C read accesses.

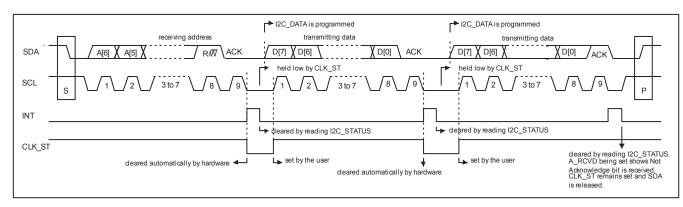


Figure 11 – Slave Mode Timing Waveform (Transmission, 7-bit Address Mode)

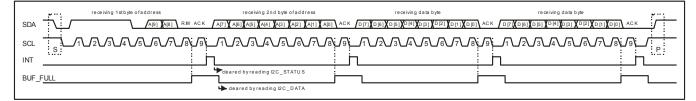


Figure 12 – Slave Mode Timing Waveform (Reception, 10-bit Address Mode)

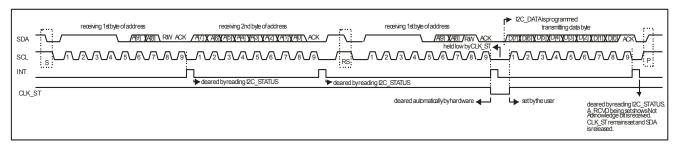


Figure 13 – Slave Mode Timing Waveform (Transmission, 10-bit Address Mode)

8.8.1.2 Master Mode

Master Mode:

1. Select the master mode. Code example:

I2C_Mode(I2C_MASTER);

2. Define the baud rate. The equation defining the baud rate as a function of the system clock is:

$$Fi2c = \frac{Fclk}{2* (divider+1)}$$

Where Fi2c is the frequency of the I^2C interface, divider is the i2c divider and Fclk is the system clock. Code example to select an I^2C clock of 100kbits/sec. (Assuming a system clock of 4MHz)

I2C WriteClockDivider(19); //I2C baud = 100kbits/sec

3. Enable the interface. Code example:

I2C Enable(I2C ON);//Enabling the interface

4. Enable the interrupts and define the corresponding handlers, exactly like in items 6 and 7 from the slave mode.

From this point on the application must handle the communication. The following paragraphs will describe the general steps:

As an I²C Master, the Master controls SCL and SDA when issuing Start, Repeated Start and Stop conditions. It also drives (release/drain) SCL and SDA when transmitting address/data bytes as well as ACK/NACK bits after receiving data bytes.

8.8.1.2.1 Configuration Settings

As an I²C Master, the Master controls SCL and SDA when issuing Start, Repeated Start and Stop conditions. It also drives (release/drain) SCL and SDA when transmitting address/data bytes as well as ACK/NACK bits after receiving data bytes.

When **IEN** and **IMS** fields are both set the interface is configured as an I^2C Master.

8.8.1.2.2 Baud Rate Generators Configuration

A baud rate generator (BRG) inside the peripheral serves as an engine to time SCL transition during data transfer as well as the transitions of both SCL/SDA during Start, Repeated Start and Stop conditions.

BRG consists of an 8-bit counter that when enabled, loads the value from **I2CADDR0** and counts down to 0 and Then goes back to **I2CADDR0** value and repeats counting down process. When BRG counter counts down to 0, it triggers the SCL transitions during data transfer and SCL/SDA transitions during Start, Repeated Start and Stop conditions.

The peripheral's baud rate is determined by the system clock frequency F_{clk} and divider. The equation is:

$$Fi2c = \frac{Fclk}{2*(divider+1)}$$

8.8.1.2.3 Start Condition

The Master issues a Start condition when **IRSTRB** is set by the user. When detecting the issued Start condition the Master asserts an interrupt and clears **ISTRSTRETCH**. The user reads **I2CSTATUS** to clear the interrupt condition. At this point the **ISTRR** is set.

Once **ISTRSTRETCH** is set, if SCL is sampled low first before SDA goes low or if SCL or SDA is already sampled low when **ISTRSTRETCH** is set, Then There is a bus collision due to another I²C Master on the bus, and the bus collision interrupt is asserted. The application must read **I2CSTATUS** to clear this interruption condition.

8.8.1.2.4 Repeated Start Condition

The Master issues a Repeated Start condition when **ISTRSTRETCH** is set by the user. When detecting The issued Repeated Start condition, the Master asserts an interrupt and clears **IRSTR**. The user reads **I2CSTATUS** to clear the interruption condition. At this point the **ISTRR** is set.

Once **IRSTR** is set, if SCL is sampled low first before SDA goes low, or if SDA is sampled low when SCL goes from low to high, Then There is an I^2C bus collision and a collision interrupt is asserted. The user reads **I2CSTATUS** to the interrupt condition.

8.8.1.2.5 Stop Condition

The Master issues a Stop condition when **ISTPSIZE** is set by the user. When detecting the issued Stop condition the Master asserts an interrupt and clears **ISTPSIZE**. The user reads **I2CSTATUS** to clear the interrupt condition. **ISTPR** is set.

Once **ISTPSIZE** is set, if SDA is sampled low one baud period (T_{br}) after it is released by the peripheral, or after SCL is released, SCL is sampled low before SDA goes high, Then There is

an I^2C bus collision and a collision interrupt is asserted. The user reads **I2CSTATUS** to clear the collision interrupt condition.

8.8.1.2.6 Acknowledge Bit

The Master transmits ACK/NACK bit when **ISACK** is set by the user. If the value of **ISNACK** is 1, a NACK bit is transmitted otherwise an ACK bit is transmitted. The Master asserts an interrupt and clears **ISNACK**. The user reads **I2CSTATUS** to clear the interrupt condition.

If the Master transmits a NACK bit but detects an ACK bit, Then There is an I^2C bus collision and a collision interrupt is asserted. The user reads **I2CSTATUS** to clear the collision interrupt.

8.8.1.2.7 I2C Write Access Sequence

The typical I²C write access sequence consists of the following steps:

- The user sets **ISTRSTRETCH** to issue a Start condition.
- The Master detects the Start condition and asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt and check **ISTRR**.
- The user programs **I2CDATA** with the destined I²C Slave's address, Then the Master starts transmitting the address byte.
- After sampling ACK/NACK bit sent by the Slave, the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt condition and check **IACKR**.
- The user programs **I2CDATA** with the data byte to be transmitted, Then the Master starts transmitting the data byte.
- After sampling ACK/NACK bit sent by the Slave, the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt condition and check **IACKR**.
- Repeat steps 5 and 6 to transmit more bytes.
- The user can access a different I²C Slave or read from the same one by setting IRSTR, Then Master issues a Repeated Start condition. When the condition is sampled the Master asserts an interrupt. The user reads I2CSTATUS to clear the interrupt condition and check ISTRR.
- The user concludes current transfer by setting **ISTPSIZE**, and the Master issues a Stop condition. When the condition is sampled the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt and check **ISTPR**.

Figure 14 shows a timing waveform of Master write access. Note that the only difference between 7-bit and 10-bit address mode is that the user needs to program two address bytes in 10-bit mode.

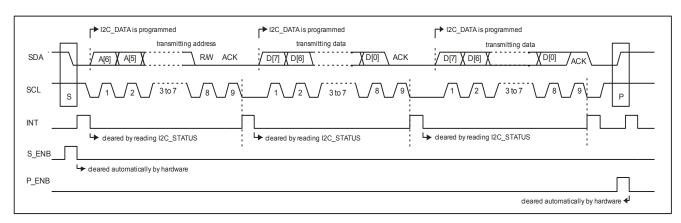


Figure 14 – Master Timing Waveform (Transmission)

8.8.1.2.8 I²C Read Access Sequence

The typical I²C read access sequence consists of the following steps:

- The user sets **ISTRSTRETCH** to issue a Start condition.
- The Master detects the Start condition and asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt and check **ISTRR**.
- The user programs **I2CDATA** with the destined I²C Slave's address, Then the Master starts transmitting the address byte.
- After sampling ACK/NACK bit sent by The Slave, the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt and check **IACKR**.
- The user sets **IRCSTRT**, which enables the Master to pulse SCL and shift in data byte. After shifting in the whole data byte the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt. The user then reads **I2CDATA** to fetch the received data byte.
- The user clears **ISNACK** (Acknowledge bit to be sent) and sets **ISACK**. The Master transmits ACK bit. After the transmission the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt.
- Repeat steps 5 and 6 to receive more bytes.

- The user can access a different I²C Slave or write to the same one by setting **IRSTR**, then the Master issues a Repeated Start condition. When the condition is sampled the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt and check **ISTRR**.
- If the data byte being received is the last one, after clearing the interrupt, the user sets **ISNACK** (Not Acknowledge bit to be sent) and **IRSTS**. Master transmits NACK bit. After the transmission the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt.
- The user concludes current transfer by setting **ISTPSIZE**, and the Master issues a Stop condition. When the condition is sampled the Master asserts an interrupt. The user reads **I2CSTATUS** to clear the interrupt and check **ISTPR**.

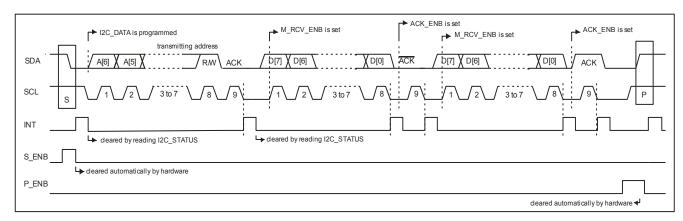


Figure 15 shows an example of Master read access.

Figure 15 – Master Timing Waveform (Reception)

8.8.1.2.9 RW_BUSY Indicator

Whenever detecting a Start/Stop condition it does not issue, the Master asserts/de-asserts RW_BUSY to indicate the busy/idle status of I^2C bus. The user can check **IRWBUSY** before issuing a Start condition so bus collision can be avoided.

8.8.2 I2C Registers

The following registers are made available by the I²C interface:

<u>I2CSTATUS</u>: I²C status register.

I2CSTAT	US		0x50000008			0x00					
R	R	R	R	R	R	R	R				
IACKR	IADDRR	ISTRR	ISTPR	IRWBUSY	IBUFF	IWBUFOVL	IRBUFOVL				
MSB		LSB									
Bit7	IACKR: Acknowledge received										
	0 = ACK received / 1 = ACK not received										
Bit6	IADDRR: Data	a/Address receiv	ed (slave mode)	1							
	0 = DATA rece	eived / 1 = ADE	RESS received								
Bit5	ISTRR: Start b	pit received									
	0 = Start bit no	ot received									
	1 = Start bit re	eceived									
Bit4	ISTPR: Stop b	oit received (slav	e mode)								
	0 = No stop bit received										
	1 = Stop bit received										
Bit3	IRWBUSY: Read/Write Busy:										
	Master Mode:										
	0 = B	Bus not being acc	cessed								
	1 = B	Bus being access	ed								
	Slave Mode:										
	0 = 12	2C write operatio	on (Slave receive	es data)							
	1 = 12	2C read operatio	n (Slave transmi	ts data)							
Bit2	IBUFF: Buffer	Full									
	0 = Buffer is e	mpty									
	1 = Buffer full,	either because	it received data of	or There is one b	yte to be transm	litted					
		Nrite buffer over	flow								
	0 = Buffer is e	mpty									
	1 = Internal sh	nift register is full	and I2CDATA w	as written to							
		ata/Address rec	eived (slave mod	de)							
	0 = Register w										
	1 = Internal shift register is full and another byte is received from I2C bus.										
NOTE: W	/hile IRBUFO	VL is set the shif	t-in of bits from b	ous is stopped.							

<u>I2CCTRL1</u>: I²C control register 1.

I2CCT	RL1			0x500000	09	0x00						
R/	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
IRS	STR	ICLKSTR	IGC	IRCSTRT	ISNACK	ISACK	ISTPSIZE	ISTRSTRET CH				
M	SB							LSB				
Bit7	IRST	R: Repeated s	tart bit (N	laster Only)								
	0 = Repeated start bit disabled											
	1 = Issue start-bit transmit enable (when set the I2C transmits Repeated Start bit), cleared by HW.											
Bit6	ICLKS	STR: Clock str	etch (Sla	ve Only)								
	0 = S0	CL held low /	1 = SCL	released								
Bit5	IGC: (General call ad	ddress (S	lave Only)								
	0 = Ge	eneral call add	dress disa	abled / 1 = Ger	neral call address	enabled						
Bit4	IRCSTRT: Start bit reception (Master Only and cleared by HW)											
	0 = Receive operation not allowed											
	1 = Receive operation starts (the receive operation starts when this bit is set)											
Bit3	ISNACK: ACK bit to be transmitted: (Master Only)											
D 110			-	reception of byt	e / 1 = NA	CK is transmitte	ed upon reception	n of byte				
Bit2		C: ACK bit (Ma										
					NACK) is transm	itted						
Bit1				on of address si	NACK) is transm	IIIIeu						
DILI		r Mode										
	Masic	0 = No sto	n hit sent									
		1 = Stop bi										
	Slave											
		0 = 7-bit ad	ddress									
		1 = 10-bit a										
Bit0	ISTR	STRETCH: Sta	art and st	retch								
	Maste	r Mode										
		0 = No sta	rt bit sent									
		1 = Send s	tart bit									
	Slave	Mode										
		0 = no cloc	k stretch									
		1 = Clock s	stretched									

<u>I2CCTRL2</u>: I²C control register 2.

I2CCT	RL2			0x5000000A		0x00				
R/	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
IMSK4 IMSK3 IMSK2				IMSK1	IMSK0	IEN	IFILTER	IMS		
MSB					LSB					
Bit7-3 IMSK[4:0]: I ² C Address mask (Slave Only)										
Bit2	2 IEN: I ² C Enable bit									
	$0 = I^2 C$ disabled									
	1 = I ² C	c enabled								
Bit1	IFILTE	R: I ² C filter								
	0 = Fil	ter disabled								
	1 = Fil	ter enabled								
Bit0	IMS: I ²	² C Master/Slave	;							
	$0 = I^2 C$	Slave								
	1 = I ² C	C master								
implem	$1 = I^2 C$ master <u>NOTE</u> : In order to ignore the glitches on $I^2 C$ bus, a 3-tab median filter operating at system clock rate is implemented on the incoming SCL and SDA data paths. This filter can be enabled/disabled by setting/clearing IFILTER. The truth table of the median filter is shown below.									

Table 16 - Filte	r Tabs and outp	ut	
Filter tab 0	Filter tab 1	Filter tab 2	Filter output
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1 1		0	1
1	1	1	1

I2CDATA: I2C data.

I2CDATA		0x500000B			0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
IDT7	IDT6	IDT5	IDT4	IDT3	IDT2	IDT1	IDT0	
MSB							LSB	
Bit7-0 IDT[7	′:0] : I ² C Data							

I2CADDR0: I²C address 0.

I2CADDR0		0x5000000C			0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
IADDR7	IADDR6	IADDR5	IADDR4	IADDR3	IADDR2	IADDR1	IADDR0	
MSB							LSB	
Bit7-0 IADD	R[7:0] : I ² C Da	ta register lo	W.					

I2CADDR1: I²C address 1.

I2CADDR1		0x500000D			0x00			
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	R/W	R/W	
-	-			-	IADDR9	IADDR8		
MSB							LSB	
bit7-0 IADDR[9:8] : I ² C Data register high.								

8.9 ADC

 μ Sesame features two analog to digital converters (ADC1 and ADC2). These ADCs are used for short circuit detection algorithm. However, when they are not used for the short circuit detection, they are available for the general purpose. Each ADC is an 8-bit analog to digital converter with single ended input. The main features are described below:

- 8-bit resolution
- Single ended input
- Up to 80 kSPS
- Configurable reference (VREF = VREFHI-VREFLO)
 - Either based on the bandgap voltage(VBG) or regulated supply voltage(VDD)
 - o Scalable
- ADC input range is from 0V to VDD
- The 8 bit resolution may be targeted over a reduced input voltage range via a programmable gain block
- Total of 28 channels (15 in ADC1 and 13 in ADC2)

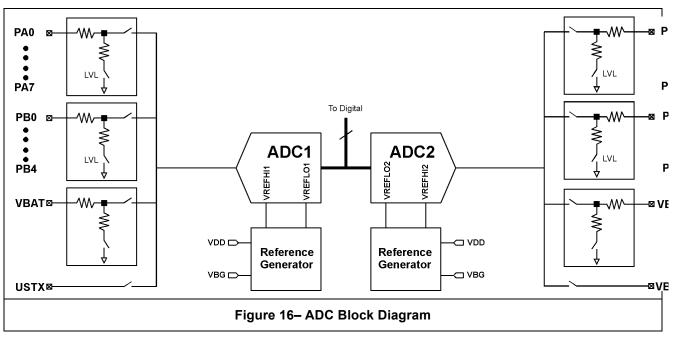
8.9.1 ADC Description

 μ Sesame ADC uses the standard charge redistribution technique, with a single-ended input and internally generated positive and negative reference voltages. There are two 8-bit ADC converters μ Sesame. ADC1 accommodates 15 analog input channels while ADC2 accommodates 13 analog input channels. The user can select which input channels to be sampled by setting ADCCHANNEL register. Each ADC has its own internally generated reference voltages (VREFHI and VREFLO). The performance table is shown below.

Table 17 : ADC Perfo	Table 17 : ADC Performance Specification, Recommended Operating Conditions, unless otherwise specified							
Parameter	Conditions	min	typ	max	unit			
Conversion speed				80	ksps			
Clock Frequency				1	MHz			
Input voltage range		0		VDD	V			
Resolution				8	bits			
INL				1	LSB			
DNL				1	LSB			

There are several steps required for the user to use the ADC. The general sequence is described below:

- 1. Select the input channel to be selected
 - a. ADCCH1 and ADCCH2 bits control the input multiplexor
 - b. Configure the input range with LVL bit
- 2. Configure ADC settings.
 - a. Set ADC clock frequency.
 - b. Configure references by setting ADCREFHI, ADCREFLO, ADCPGN, and ADCREFS bits.
- 3. Enable ADC.
- 4. Start the ADC conversion.
- 5. Check the ADC status bit and read the data.


The following section will describe each configuration steps in detail.

8.9.1.1 Input Channel Selection

All high voltage GPIOs (PA[7:0], PB[7:0], and PC[7:0]), the bandgap voltage (VBG), and the battery voltage (VBAT) are available as an input to the ADCs. The user can control which inputs are connected for the conversion by programming the control bits, ADDCH1 and ADDCH2 in ADDCHANNEL register.

Please note that since the high voltage GPIOs can have a signal that ranges from 0 to VBAT and the input range of the ADC is from 0 to VDD, it is necessary to have an option to attenuate the signal if the user wants to convert the full signal range for the GPIO. Each GPIO has a programmable control bit (LVL) to attenuate its signal by a factor of 8.

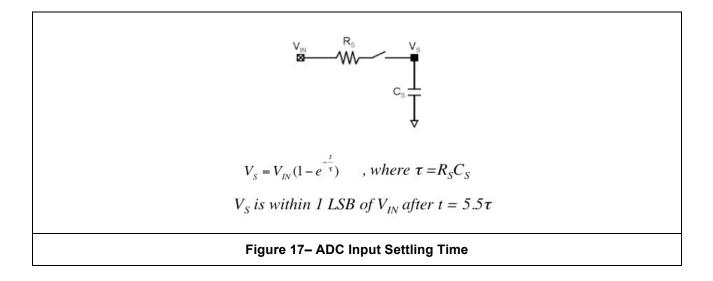
Code Example: Selecting PA0 for ADC1 input channel and VBG for ADC2 input channel

ADC_Select_Channel(ADC1_PA0, ADC2_BG);

8.9.1.2 ADC Clock and Sampling Period

The conversion algorithm has a basic period of 9 cycles (one for sampling, one for each bit). There is a twocycle latency from the last bit measurement and digital data availability. Additionally there is single idle cycle to allow biasing before any conversion is initiated. Thus a single conversion will take 13 cycles.

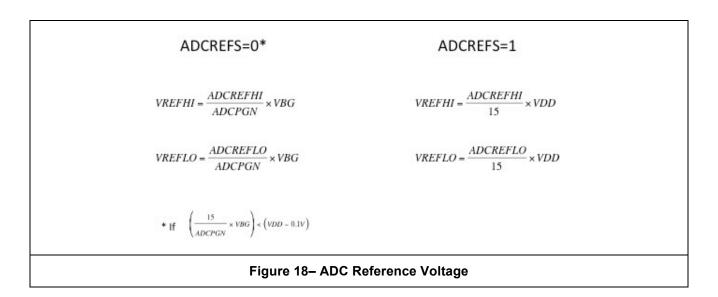
The converter will use a single clock cycle to sample the input into an input capacitor. When the channel is selected, the source must drive the S/H capacitor through the series resistance. The sampling time will vary with this resistance. The input to ADC must have sufficiently low driving impedance and settling time to settle the input to within 1 LSB of the data conversion during the input sampling stage. An equivalent circuit and related equations are depicted in Figure 17.


The ADC clock frequency can be programmed through ADCCLKDIV register. As an example, if ADC clock is derived from 3.58MHz crystal divided by 4, the input has 1.12μ s to settle. Since the C_s = 10pF in μ Sesame, the maximum source resistance to guarantee 8-bit performance can be calculated as below:

$$R_s = \frac{1.12 \mu s}{10 \, pF \times 6} = 18.6 k \Omega$$

If the source impedance is larger, the user can reduce the ADC clock frequency.

Code Example: Configure ADC clock to crytal frequency divided by 16.


ADC_ClkDiv (16);

8.9.1.3 Configuration of Reference Voltages for the ADC

The ADC can generate its reference voltages (VREFHI and VREFLO) from two different sources, the regulated supply voltage (VDD) or the bandgap voltage (VBG). The ADCREFS bit in ADCREG3 register selects the source. Once the reference source is selected, the reference voltages can be programmed through ADCREFHI, ADCREFLO, and ADCPGN bits according to Figure 18. It should be noted that when VBG is used as the reference source, care must be taken so that the internal voltages do not saturate.

Once the reference voltages are established, the ADC conversion equation for input voltage (VIN) can be defined as:

$$ADCDT = floor\left(255 \times \frac{(VIN - VREFLO)}{(VREFHI - VREFLO)}\right)$$

Here are few examples:

- Example 1: In a system operating with VDD=3V, there is a signal that moves between 0V and 2.94V. In this case it would be recommended to select VDD as the reference source and ADCREFH=15, ADCREFL=0, and ADCPGN=15. This selection would allow for the maximum range of measurements (0V to VDD).
 - o ADC Reference Config(ADC1, 15, 0, 15, ADCREFVDD);
- Example 2: In a system operating with VDD=3V and VBG= 1.21V, there is a signal that moves between 0V and 2.5V. In this case VBG can be selected as the reference source with ADCREFH=13, ADCREFL=0 and ADCPGN=7. This configuration would allow the signal range from 0V to 2.6V:
 - o ADC_Reference_Config(13, 0, 7, ADCREFBG);

- Example 3: In a system operating with VDD=3V and VBG=1.21V, there is a signal that moves between 1.71V and 2.2V. In this case selecting VBG as the reference source and select ADCREFH=15, ADCREFL=11, and ADCPGN=8 we can achieve higher resolution:
 - o ADC_Reference_Config(15, 11, 8, ADCREFBG);

The resolution in Example 3 can be calculated as follow:

$$RESOLUTION = \left(\frac{VREFHI - VREFLO}{255}\right) = \left(\frac{\left(\frac{15}{8} \times 1.21\right) - \left(\frac{11}{8} \times 1.21\right)}{255}\right) = \frac{2.27 - 1.66}{255} = 2.38 mV$$

Note that in this particular case we have the 8-bit ADC effectively generating a digital value with the precision of a 10-bit ADC operating from 0V to 3V.

It is clear from the examples how flexible the ADC can be in a range of applications. The user can devise several schemes to cleverly measure the range of signal of interest and then narrow the reference values to get the optimum resolution if the conversion time is within range.

8.9.1.4 ADC Start and Status

Before starting the conversion, the ADC must be enabled and biased. The ADC is enabled by the ADCEN bit (**ADCREG3**). The START bit (**ADCSTART**) starts the conversion process. Once completed the value of the conversion is loaded into the ADCDATA registers.

Code Example: Enable the converter and start conversion

```
ADC_Enable(ADCEN);
ADC_Start(); //ADC enabled and start
while ( ADC_ConversionComplete() == 1 ); //Wait until completed
```


8.1.1 ADC Registers

The following registers define the behavior of the ADC:

ADCCHANNELS: Channel selection for both ADCs.

ADCCHA	NNELS		0x50000054			0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ADC2CI	3 ADC2CH2 ADC2CH1 ADC2CH0		ADC2CH0	ADC1CH3	ADC1CH2	ADC1CH1	ADC1CH0	
MSB							LSB	
	ADC2CH[3:0]: Chann ADC1CH[3:0]: Chann							
ADC2CH	[3:0]			ADC1CH[3:0]				
(0000 = PC0			0000) = PA0			
(0001 = PC1			0001	= PA1			
(0010 = PC2			0010) = PA2			
(0011 = PC3			0011	= Not used			
(0100 = PC4			0100 = PA4				
(0101 = PC5			0101 = PA5				
(0110 = PC6			0110 = PA6				
(0111 = PC7			0111	= PA7			
	1000 = PA3			1000) = PB0			
	1001 = PB5			1001	= PB1			
	1010 = PB6			1010) = PB2			
1011 = PB7				1011 = PB3				
	1100 = NC			1100 = PB4				
	1101 = NC			1101 = USTX Signal (Ultrasound transmit)				
	1110 = Reserved			1110 = Reserved				
	1111 = NC			1111	= NC			

ADCSTART: ADC start of conversion control

ADCSTART		0x50000055			0x00		
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	R/W
_	_				_	_	START
MSB							LSB
Bit0 START: Writing one starts the conversion. Reading returns the status of conversion; '0' means conversion							

Is finished and '1' means the conversion is ether pending or in progress

ADC1DATA: ADC1 result.

ADC1DATA		0x50000056			0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
AD1DT7	AD1DT6	AD1DT5	AD1DT4	AD1DT3	AD1DT2	AD1DT1	AD1DT0
MSB							LSB
Bit7-0 AD1	Bit7-0 AD1DT[7:0]: ADC1 Result						

ADC2DATA: ADC2 result.

ADC2DATA		0x50000057			0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
AD2DT7	AD2DT6	AD2DT5 AD2DT4		AD2DT3	AD2DT2	AD2DT1	AD2DT0	
MSB							LSB	
Bit7-0 AD	Bit7-0 AD2DT[7:0]: ADC1 Result							

ADCCLKDIV: ADCs Clock Divider Control.

ADCCLKDI	/	0x5000005A			0x6F			
Reserved R/W		Reserved	Reserved	R/W	R/W	R/W	R/W	
		-	-	-	ADCDIV1	-	ADCDIV0	
MSB							LSB	
Bit2-0 ADC	DIV[1:0]	: ADC Clock	divider					
00 =	System	Clock/2						
01 = System Clock/4								
1x =	System	Clock/1						

ADCREG0: ADC1 Reference Settings

ADCREG0			0x50018008	0xF0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADC1REFH3	ADC1REFH2	ADC1REFH1	ADC1REFH0	ADC1REFL3	ADC1REF L 2	ADC1REF L 1	ADC1REF L 0
MSB							LSB
Bit7-4 ADC1REFH[3:0]: ADC1 Reference High Setting Bit3-0 ADC1REFL[3:0]: ADC1 Reference Low Setting							

ADCREG1: ADC2 Reference Settings

ADCREG1			0x50018009	0xF0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADC2REFH3	ADC2REFH2	ADC2REFH1	ADC2REFH0	ADC21REFL3	ADC2REF L2	ADC2REF L1	ADC2REF L0
MSB							LSB
Bit7-4 ADC2REFH[3:0]: ADC2 Reference High Setting Bit3-0 ADC2REFL[3:0]: ADC2 Reference Low Setting							

ADCREG2: ADCs Reference Gain Values

ADCREG2			0xFF				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ADC1PGN3	ADC1PGN3 ADC1PGN2		ADC1PGN0	ADC2PGN3	ADC2P GN2	ADC2P GN1	ADC2P GN0
MSB							LSB

ADCREG3: ADCs General Control

ADCRE	G3		(0x5001800B			0x13	
Reserv	/ed R/W		R/W	R/W	R/W	R/W	R/W	R/W
-	ADCE	N	ADCGNDOFF ADC_SW1 ADC_SW0		ADC_CAL	ADC2REFS	ADC1REFS	
MSE	3							LSB
Bit6	ADCEN: AD	Cs E	Enable Bit.					
	0 = ADCs Di	sabl	ed /1 = ADCs En	abled				
Bit5	ADCGNDOF	F: 6	Ground offset corre	ection				
	0 = bandgap	and	ADC reference h	ave common gr	ound			
	1 = differenc	e be	etween bandgap ar	nd ADC referen	ce is compensa	ted by switche	d capacitor circui	it
Bit4-3	ADCSW[1:0]: A[DCs Enable Bit.					
	00 = Correla	ted o	double sampling o	ff				
	01 = Input of	fset	calibration on					
	1x = Correla	ted o	doubling sampling	on (default)				
Bit2	ADCCAL: A	DC (Calibration					
	0 = Normal							
	1 = Calibratio	on m	node					
Bit1	ADC2REFS	: AD	C2 Internal Refere	ence Source Se	lection			
	0 = Band Gap							
	1 = VDD							
Bit0	ADC1REFS: ADC1 Internal Reference Source Selection							
	0 = Band Gap							
	1 = VDD							

8.10 PULSE WIDTH MODULATORS (PWM)

µSesame implements two PWMs. Their main characteristics are:

- Twelve bits resolution Both period and width.
- Independent Prescalers
- Programmable active level
- Short Circuit detection circuit with programmable level
- Programmable outputs
 - PWM1 = [PB0, PC5 and PC7]
 - PWM2 = [PA7, PB1 and PC3]

8.10.1 PWMs Usage Description

The PWM circuit generates wide range high resolution modulated output for siren driver, led drivers and other drivers used in μ Sesame. Each PWM has total of 4 data and configuration registers to communicate with the microcontroller.

The waveform is controlled by 12-bit period word (PWMnPER and PWMnEXT) and 12-bit pulse width word (PWMnPW and PWMnEXT) are used to determine the output waveform.

The entire waveform can be scaled by adjusting the Prescaler value in PWMnCTRL. The prescaler divided value, PWM_DIV, can be set to one of eight different settings shown in Table 18.

Table 18 PWM Pr	escaler Divide Values
PWM_PRESC	PWM_DIV (f _{XO} /f _{PWM})
000	1
001	2
010	4
011	8
100	32
101	256
110	8,192
111	262,144

The output period is calculated as:

$$Period = \frac{1 + (PWM_PER \times PWM_DIV)}{SystemClock}$$

For PWM1 and for PWM2 the PWM pulse width is calculated as:

$$PulseWidth = \frac{1 + (PWM_PW \times PWM_DIV)}{SystemClock}$$

To control the active level of the PWM, a control bit **PWM_INV** is used. If this bit is set to one, the PWM output is low level during the pulse and one at other times, including if the PWM is disabled either by the user or by the short circuit protection.

Alternatively if **PWM_INV** is set to zero then the PWM outputs a high level during the pulse.

Code Example: Setting the PWM1, enabled, with period and width separated, not inverted, with a prescaler of 2^5 :

PWM Setup(PWM1, PWMEN, PWMNINV, PRESC5);

Code Example: Selecting the period and pulse width of the same PWM1. (Prescaler of 2⁵)

```
PWM_Period (PWM1,373);
PWM_Width (PWM1,280);
```

NOTE: From the above equations we can see that for a system clock of 3.579545MHz the period is of 3.325msec. (Frequency of ~300Hz with a width of 249.4msec, duty cycle of ~75%.)

8.10.2 PWMs Registers

The following registers are provided to control the PWMs:

PWM1CTRL: PWM1 General Control

PWM10	CTRL			0x50000048			0x00		
R/\	N	Reserved	Reserved	R/W	Reserved	R/W	R/W	R/W	
PWM1	_EN	-	-	PWM1_INV	-	PRESC2	PRESC1	PRESC0	
MS	MSB							LSB	
Bit7 PWM1_EN: PWM1 e			able bit.						
	0 = PWM Disabled								
	1 = P\	WM Enabled							
Bit4	Bit4 PWM1_INV: PWM1 output signal direction								
	0 = nc	ormal logic							
	1 = in	verted logic (acti	/e low)						
Bit2-0	PRES	C[2:0]: PWM's	Prescaler						
	000 =	System Clock/1							
	001 =	System Clock/2							
	010 =	System Clock/4							
	011 = System Clock/8								
	100 = System Clock/32								
101 = System Clock/256									
	110 =	System Clock/8	192						
	111 =	System Clock/2	62144 (2 ¹⁸)						

<u>PWM1PER</u>: PWM1 period high byte register

PWM1PER			0x50000049	0x00				
R/W R/W		R/W	R/W	R/W	R/W	R/W	R/W	
PWM1PER11	PWM1PER10	PWM1PER9	PWM1PER8	PWM1PER7	PWM1 PER6	PWM1 PER5	PWM1 PER4	
MSB							LSB	
Bit7-0 PWM1PER[11:4]: PWM1 period high register								

PWM1PW: PWM1 width high byte register

PWM1PW			0x5000004A	0x00					
R/W R/W		R/W	R/W	R/W	R/W	R/W	R/W		
PWM1PW11	PWM1PW10	PWM1PW9	PWM1PW8	PWM1PW7	PWM1 PW6	PWM1 PW5	PWM1 PW4		
MSB							LSB		
Bit7-0 PWM1	Bit7-0 PWM1PW[11:4]: PWM1 width high register								

<u>PWM1EXT</u>: PWM1 extension with low nibble of period and width.

PWM1EXT			0x5000004B	0x00					
R/W	R/W R/W		R/W R/W R/W		R/W	R/W	R/W	R/W	R/W
PWM1PER3	PWM1PER2	PWM1PER1 PWM1PER0 PWM1		PWM1PW3	PWM1 PW2	PWM1 PW1	PWM1 PW0		
MSB							LSB		

PWM2CTRL: PWM2 General Control

R/W PRESC2	R/W PRESC1	R/W PRESC0 LSB					
PRESC2	PRESC1						
		LSB					
PWM2_INV: PWM2 output signal direction							
0 = normal logic							
1 = inverted logic (active low)							
0 = normal logic							

Bit2-0	PRESC[2:0]: PWM's Prescaler
	000 = System Clock/1
	001 = System Clock/2
	010 = System Clock/4
	011 = System Clock/8
	100 = System Clock/32
	101 = System Clock/256
	110 = System Clock/8192
	111 = System Clock/262144 (2 ¹⁸)

<u>PWM2PER</u>: PWM2 period high byte register

PWM2PER			0x5000004D	0x00					
R/W	R/W	R/W R/W		R/W	R/W	R/W	R/W		
PWM2PER11	PWM2PER10	PWM2PER9	PWM2PER8	PWM2PER7	PWM2 PER6	PWM2 PER5	PWM2 PER4		
MSB							LSB		
Bit7-0 PWM2	Bit7-0 PWM2PER[11:4]: PWM2 period high register								

<u>PWM2PW</u>: PWM2 width high byte register

PWM2PW			0x00						
R/W	R/W R/W		R/W	R/W	R/W	R/W	R/W		
PWM2PW11 PWM2PW		PWM2PW9	PWM2PW8	PWM2PW7	PWM2 PW6	PWM2 PW5	PWM2 PW4		
MSB							LSB		
Bit7-0 PWM	Bit7-0 PWM2PW[11:4]: PWM2 width high register								

PWM2EXT: PWM2 extension with low nibble of period and width.

PWM2EXT			0x5000004F	0x00				
R/W R/W		R/W	R/W R/W		R/W	R/W	R/W	
PWM2PER3	PWM2PER2	PWM2PER1	PWM2PER0	PWM2PW3	PWM2 PW2	PWM2 PW1	PWM2 PW0	
MSB							LSB	
Bit7-4 PWM2PER[3:0]: PWM2 period low nibble Bit3-0 PWM2PW[3:0]: PWM2 width low nibble								

8.11 GPIOs

µSesame provides 36 general-purpose I/O pins. µSesame's I/O pins are implemented with several different capabilities divided into the following groups:

- $\circ~$ GIO is a general purpose I/O referred to Vbat (from 9V up to 45V). When used as an output it is capable of sinking (to ground) 25mA or sourcing 5mA. When used as an input the GIO can be programmed to be high impedance, 100µA/5mA pull up or 100µA/5mA pull down. The state of the pin can be read while in output mode, therefore allowing for a software-based over current protection.
- SIO has the same functions as GIO, but with 200mA sink capability, which may be protected against over-current through software.
- PSIO (a single pin) has the same function as GIO, but with 200mA source capability, which may be protected against over-current through software.
- o 3V3IO are 3.3V digital I/Os, which are referenced to an internal regulator.

The following table defines the main characteristics of the GPIO pins:

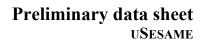
l/O Type	Name	Conditions	Min.	Тур.	Max.	l/O Type	Name	Conditions	Min.	Тур.	Max.	Unit
	N	Threshold Low		1.65			VIL	Threshold Low		1.65		V
	VIL	Threshold High		4				Threshold High		4		V
	Vih	Threshold Low		1.65			Vih	Threshold Low		1.65		V
	VIH	Threshold High		4		VIH	Threshold High		4		V	
GIO	Iol			25		sio	lol			200		mA
GIO	Іон			5		310	Іон			5		mA
	Pull-	Strength Low		100			Pull-	Strength Low		100		μA
	Down	Strength High		5			Down	Strength High		5		mA
	Pull-	Strength Low		100			Pull-	Strength Low		100		μA
	Up	Strength High		5		U	Up	Strength High		5		mA
	V _{IL}	Threshold Low		1.65		-	VIL			1.65		V
		Threshold High		4						0.1		v
	Vih	Threshold Low		1.65						1 65		v
		Threshold High		4			Vih			1.65		V
PSIO	Iol			25		3V3IO	Iol			25		mA
. 010	Іон			200			Іон			5		mA
	Pull- Down	Strength Low		100			Pull- Down	Strength Low		-		μA
		Strength High		5				Strength High		-		mA
	Pull- Up	Strength Low		100			Pull- Up	Strength Low		-		μΑ
		Strength High		5				Strength High		-		mA

8.11.1.1 General-Purpose I/O (GIO)

The GIO interface pins are intended to operate as reconfigurable general-purpose inputs or outputs referenced to Vbat. Additionally, they can be used for open-drain pull-down on systems with voltage equal to or lower than their supply voltage, e.g. for 5V or 3.3V systems.

High current and low current pull-ups can be selected in receive mode, as well as a selectable threshold to receive at 3.3V, 5V or Vbat levels using signal thresholds of 1.65V and 4.0V respectively.

Additionally, outputs are protected against potentially damaging loads. When the high-level output is activated, the output current is limited by an internal circuit to 5mA, which can be sustained continuously.


When the low-level output is activated, protection against thermal damage caused by a short circuit must be done by user software by comparing the voltage level on the pad with the intended driven level shortly after activation using the 1.65V threshold receiver. If the level is different, i.e. above 1.65V threshold, then the user software must tri-state or activate a high level output within 200 milliseconds to avoid potential damage to the chip.

This protection is not intended to protect these pins against voltage overshoot from driving strongly inductive loads, and so GIO pins should not be used for inductive loads without additional protection on the PCB (**P**rinted **C**ircuit **B**oard).

Pin configuration is accomplished using special function registers, SFDICFG, PBnCFG, and PCnCFG.

Table 2	Table 20 - GIO and SIO Pin Functional Configuration								
DD	PUP	PDN	Pin Function						
0	0	0	high-Z input						
0	0	1	input with pull down (current level set by STR)						
0	1	0	input with pull up (current level set by STR)						
0	1	1	reserved						
1	Х	0	nuch/null (to VDD lovelo) output with simple load protection						
1	0	Х	push/pull (to VDD levels) output, with simple load protection						
1	1	1	open-drain output, with simple load protection						

The receiver is active at all times, and any read from the port will always return the data read from the pin, even if the pin is set as an output.

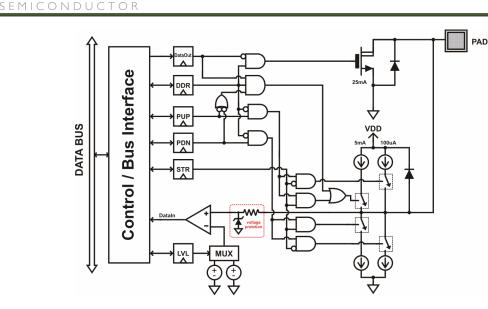


Figure 19 - Typical GIO Interface

8.11.1.2 High Current Pull down I/O (SIO)

SIO interface pins are intended to operate as reconfigurable inputs or outputs referenced to Vbat, optimized for use as high-current pull-downs. They can be used for open-drain pull-down on systems with voltage equal to or lower than their supply voltage, e.g. 3.3V or 5V systems.

High current and low current pull ups can be selected in receive mode, which uses a 4V signaling threshold level. Internal circuits are protected against sustained high voltage up to 45V applied to the pad.

A pull-down mode may be activated when using the I/O as an output. Pull-down output mode may be protected against potentially damaging loads by comparing the voltage level on the pad with a maximum level corresponding to a safe margin for thermal damage.

If the power dissipated in the transistor is too high, which happens when output voltage is above 1.65V with the pull down on, then the user software must turn the pull down off within approximately 200 milliseconds to avoid thermal damage.

In order to achieve this, the user software must read back from the pin with the threshold set to 1.65V as soon as possible after the pull down is activated in order to detect a short circuit or overload condition.

It is recommended that the pin be configured as push/pull when driving inductive loads to assist the freewheel function and reduce strain on the ESD diode which is responsible for conducting the freewheel current by allowing some current to pass through the PMOS transistor.

If the load is resistive, then the open drain mode of protection is preferred. Pull up protection is implemented in a same fashion as with the GIO type, by internally limiting the maximum current to 5mA, which can be sustained continuously at any pad output voltage within normal operating conditions.

The receiver is active at all times, and any read from the port will always return the data read from the pin, even if the pin is set as an output.

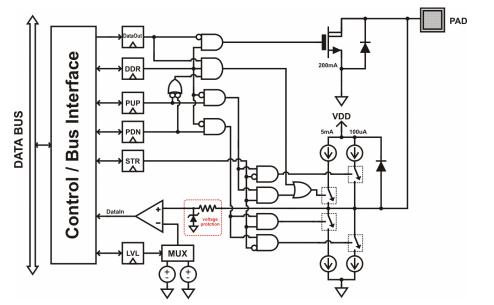


Figure 20 - Typical SIO Interface

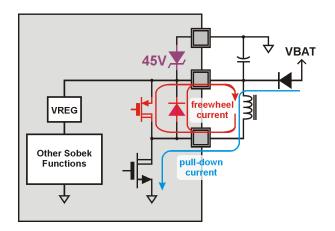


Figure 21: Freewheel Action

Figure 21 illustrates inductive freewheel operation.

Code Example: Configure Port C with the following characteristics:

- PWM2 in PC3, PWM1 in PC7 with N-MOS transistor (Active level = 1 = High)
- Interrupt mask in PC0 and PC1,
- Output enable for PC3, PC5 and PC7
- Low current in pull-up/down
- Pull-up in PC0 and PC1
- No pull downs
- Input threshold high for PC0 and PC1

```
Port Config(PTC, (PC3 PWM2|PC7 PWM1|PC7 ACTL), 0x03, 0xA8, 0x00, 0x03, 0x00, 0x03);
NOTE: Function description:
/**
* @brief Port Configuration
* @param pt - port to be configured: PTA, PTB, PTC, PTD, PTE
* @param ss - auxiliar function enable. The designer must use defines:
* @param PORTA --> PA4 PWM2 SNS EN, PA5 PWM1 SNS0 EN, PA6 PWM1 SNS1 EN, PA7 PWM2
* @param PORTB --> PB0 PWM1, PB1 PWM2, PB1 ACTL
* @param PORTC --> PC3 PWM2, PC5 PWM1, PC7 PWM1 ,PC7 ACTL
* @param imask - Interrupt enable mask, active High
* @param oe - output enable, active high
* @param st - Current capability (Strength) of pullup/down (0=100uA, 1=5mA)
* @param pu - pull-up enable, active high
* @param pd - pull-down enable, active high
* e_{param} level - input threshold level. (0 = 1.65V, 1 = 4V)
*/
static INLINE void Port Config( uint8 t pt, uint8 t ss, uint8 t imask, uint8 t
oe, uint8 t st, uint8 t pu, uint8 t pd, uint8 t level )
```


8.11.1.3 GIO and SIO connection to ADC

All GIOs and SIOs are connected to the ADC input channel selector. The signals applied to these pins can either directly goes through the multiplexor or attenuated by factor of 8 and then goes through the multiplexor depending on the LVL bit.

8.11.1.4 LED

µSesame provides a pin specially designed to control a RED or BLUE LED simultaneously.

In the LED mode, additional high voltage current sources are activated providing up to ~45mA current. The current level is programmable. When the I/O pin is set to 1 with LEDEN bit enabled (**LEDIO**), regardless of the setting of GIO, LED current source is activated. When the I/O pin is reset to 0, it is deactivated.

The following diagram shows the recommended configuration of LEDs:

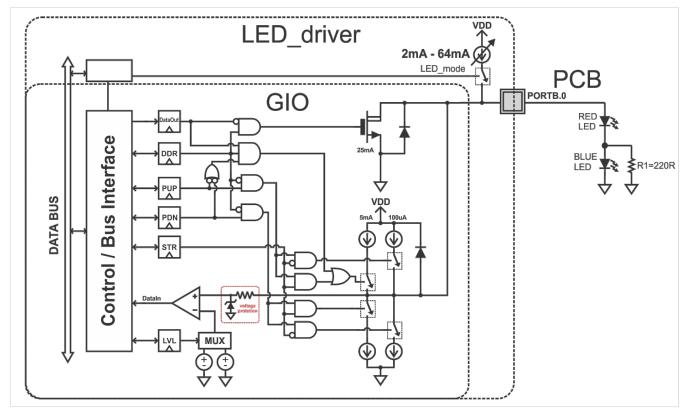


Figure 22 – LED pin Block Diagram

The nominal value of the resistor, R1 is 220Ω . In this case, the nominal current level is around 20mA for the red LED whereas it is 6.5mA for the blue LED. This output current can be programmed in the range of 0mA up to 45mA in 3mA steps. With these programmable current settings and the resistor R1 the brightness of each LED can independently be adjusted.

Code Example: The following function calls select and enable the LED with 22mA:

```
LED_Current (22); //Select 22mA current (from 0mA up to 45mA)
LED_Control (LEDEN); //Enable LED
```

8.11.2 GPIO Registers

The following registers control the behavior of the GPIO pins:

<u>PORTA:</u> Port A input and output register. When a bit is selected as output the corresponding pin will reflect the register's bit. When a bit is selected as input the bit will reflect the condition of the pin.

PORTA		0x50000060			0x00				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0		
MSB									
Bit7-0	PA[7:0]	: Port A r	egister b	oits.					
	0 = Pin state is '0'								
	1 = Pin s	state is '1	,						

<u>PORTB:</u> Port B input and output register. When a bit is selected as output the corresponding pin will reflect the register's bit. When a bit is selected as input the bit will reflect the condition of the pin.

PORTE	3	0x50000061			0x00			
R/W	R/W	2/W R/W R/W R/W				R/W	R/W	
PB7	PB6	PB5	PB4	PB2	PB1	PB0		
MSB							LSB	
Bit7-0	PB[7:0]	B[7:0]: Port B register bits.						
	0 = Pin state is '0'							
	1 = Pin state is '1'							

<u>PORTC:</u> Port C input and output register. When a bit is selected as output the corresponding pin will reflect the register's bit. When a bit is selected as input the bit will reflect the condition of the pin.

PORTO	;	0>	(5000006	62		0x00			
R/W	R/W	R/W	R/W	R/W	R/W	R/W			
PC7	PC6	PC6 PC5 PC4 PC3 PC2 PC1 P							
MSB		LSI							
Bit7-0	PC[7:0]	: Port C r	egister b	oits.					
	0 = Pin s	0 = Pin state is '0'							
	1 = Pin state is '1'								

<u>PORTD:</u> Port D input and output register. When a bit is selected as output the corresponding pin will reflect the register's bit. When a bit is selected as input the bit will reflect the condition of the pin.

PORTE)	0x50000063				0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	
MSB							LSB	
Bit7-0	PD[7:0]	: Port D ı	egister b	its.				
	0 = Pin s	0 = Pin state is '0'						
	1 = Pin s	state is '1	l'					

<u>PORTE:</u> Port E input and output register. When a bit is selected as output the corresponding pin will reflect the register's bit. When a bit is selected as input the bit will reflect the condition of the pin.

	0>	0x00					
Reserved	Reserved	Reserved	R/W	R/W	R/W	R/W	
-	-	-	PE3	PE2	PE1	PE0	
						LSB	
3:0] : Port E reg	gister bits.						
0 = Pin state is '0'							
1 = Pin state is '1'							
	- 8:0]: Port E reg Pin state is '0'	Reserved Reserved - - 3:0]: Port E register bits. Pin state is '0'		Reserved Reserved R/W - - - PE3 B:0]: Port E register bits. Pin state is '0' Pin state is '0'	Reserved Reserved R/W R/W - - PE3 PE2 B:0]: Port E register bits. Pin state is '0' Pin state is '0'	Reserved Reserved R/W R/W - - PE3 PE2 PE1 B:0]: Port E register bits. Pin state is '0' Pin state is '0' Pin state is '0'	

PORTDOE: Port D output enable register.

PORTDO		(0x50000065	5	0x00			
R/W R/W		R/W R/W		R/W	R/W	R/W	R/W	
PDOE7	PDOE6	PDOE5	PDOE4	PDOE3	PDOE2	PDOE1	PDOE0	
MSB							LSB	
0 =	D OE[7:0] : Pe = Pin is inpu = Pin is outp	t	enable bits.					

<u>PORTEOE:</u> Port E output enable and Mode configuration register

PORTE	EOE	()x50000066	;		0x00				
R/W	R/W	R/W	R/W	R/W	/ R/W R/W R/W					
PEOE	3 PEOE2	PEOE1	PEOE0	MDSPI	SPI MDI2C MDUART MDLIN					
MSB		LSB								
Bit0 Bit1 Bit2	MDLIN: LIN m 0 = GPIO 1 = LIN mode MDUART: UA 0 = GPIO 1 = UART mo MDI2C: I2C m 0 = GPIO 1 = I2C mode	.RT mode e de node enable	nable							
Bit3 Bit7-4	MDSPI: SPI n 0 = GPIO 1 = SPI mode PEOE[3:0]: P 0 = Pin is inpu 1 = Pin is outp	node enable ort E output it								

PCONF: I2C, LIN and UART configuration register.

PCON	F		()x50000067	7		0x00			
Reser	ved	Reserved	Reserved	R/W	R/W	R/W	R/W	R/W		
I2C_R	T[1]	I2C_RT[0]	-	LTREN	LPSWAP	UPSWAP	LTXPOL	UTXPOL		
MS	В							LSB		
Bit7-6	12C_	RT[1:0]: I2C R	esistor Trim							
	00 =	Open								
	01 =	1k								
	10 =	10k								
	11 =	100k								
Bit4	LTRE	EN: Lin transmi	ission enable	bit						
	0 = T	ransmission di	sabled							
	1 = T	ransmission ei	enabled							
Bit3	LPSV	VAP: LIN Pins	Swap Bit.							
	0 = P	ins are not swa	apped (TX=PD[7] and RX = PD[6])							
	1 = P	ins are swapp	ed (TX=PD[6]	and RX = F	PD[7])					
Bit2	UPS	NAP : UART P	ins Swap Bit.							
	0 = P	ins are not swa	apped (TX=PI	D[5] and RX	(= PD[4])					
	1 = P	ins are swapp	ed (TX=PD[4]	and RX = F	PD[5])					
Bit1	LTXF	OL : LIN signa	lls polarity.							
	0 = normal polarity									
	1 = ir	verted polarity	У							
Bit0	UTX	POL: UART sig	nals polarity.							
	0 = normal polarity									
	1 = ir	verted polarity	1							

<u>SFDICFGn:</u> PAn configuration register. (n = 0, 1, 2, 3)

SFDIC	FGn		0x500	000068/9)/A/B		0x00	
Reserv	Reserved Reserved R/W R/W R						R/W	R/W
-		-	INTE	DD	STR	PUP	PDN	LVL
MSE	3							LSB
Bit5 Bit4 Bit3 Bit2	0 = 1 1 = 1 DD: 0 = 1 1 = 0 STR 0 = 1 1 = 1 PUP 0 = 1 1 = 1 1 = 1	Dutput Pull Up/Dow ow Strength (High Strength Pull up enab Disabled Enabled	led ed n (100uA) (5mA) le.					
Bit1	PDN: Pull Down enable. 0 = Disabled 1 = Enabled							
Bit0	LVL	: Input Thresh ₋ow Threshold						
	1 = H	High Threshold	d					

PA4CFG: PA4 configuration register.

PA4CI	FG		0×	5000006	6C		0x00	
Rese							R/W	
-		PWM2_SNS	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit6	PWM	I2_SNS: PWM2	2 Short C	Circuit Se	nsor			
	0 = S	ensor Disabled	ł					
	1 = S	ensor Enabled						
Bit5	INTE	: Interrupt not a	available					
Bit4	DD : [Data Direction						
	0 = Ir	nput						
	1 = C	output						
Bit3	STR:	Pull Up/Down	Strength	Control				
	0 = L	ow Strength (1	00uA)					
	1 = H	ligh Strength (5	imA)					
Bit2	PUP:	Pull up enable						
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = Disabled							
	1 = Enabled							
Bit0	LVL: Input Threshold level							
	0 = Low Threshold							
	1 = H	ligh Threshold						

PA5CFG: PA5 configuration register.

PA5C	FG			0x5000006D			0x0	0
Rese	erved	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-	-	PWM1_SNS0	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit6	PWM	1_SNS0: PWM	11 Short Circui	t Sensor0			1	
	0 = S	ensor Disabled						
	1 = S	ensor Enabled						
Bit5	INTE	: Interrupt not a	vailable					
Bit4		Data Direction						
	0 = In	-						
		utput						
Bit3		Pull Up/Down	•	rol				
		ow Strength (10	,					
	1 = H	igh Strength (5	mA)					
Bit2	PUP:	Pull up enable						
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	ıble.					
	0 = Disabled							
	1 = Enabled							
Bit0	LVL: Input Threshold level							
	0 = Low Threshold							
	1 = H	igh Threshold						

PA6CFG: PA6 configuration register.

PA6CI	A6CFG 0x500006E 0x00							
Resei	rved	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-		PWM1_SNS1	INTE	DD	STR	PUP	PDN	LVL
MS	В							LSB
Bit6	PWN	I1_SNSO: PWI	M1 Shor	t Circuit S	Sensor1			
	0 = 5	Sensor Disable	d					
	1 = 5	Sensor Enabled	t					
Bit5	INTE	: Interrupt not	available	9				
Bit4	DD:	Data Direction						
	0 = 1	nput						
	1 = (Dutput						
Bit3	STR	: Pull Up/Down	Strengt	h Contro	I			
	0 = L	ow Strength (1	100uA)					
	1 = H	ligh Strength (5mA)					
Bit2	PUP	: Pull up enable	e.					
	0 = 0	Disabled						
	1 = E	Enabled						
Bit1	PDN	: Pull Down en	able.					
	0 = Disabled							
	1 = Enabled							
Bit0	LVL: Input Threshold level							
	0 = Low Threshold							
	1 = H	ligh Threshold						

PA7CFG: PA7 configuration register.

PA7C	FG			0x5000006	3F		PUP PDN	
Rese	erved	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-	-	PWM2_OUT	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit6	PWM	2_OUT: PWM2	2 Output	Enable				
	0 = P	WM output dis	abled					
	1 = P	WM output ena	abled					
Bit5	INTE	: Interrupt not a	vailable					
Bit4		Data Direction						
	0 = Ir	nput						
	1 = O	output						
Bit3	STR:	Pull Up/Down	Strength	Control				
	0 = L	ow Strength (1	00uA)					
	1 = H	igh Strength (5	mA)					
Bit2	PUP:	Pull up enable						
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = D	isabled						
	1 = Enabled							
Bit0	LVL:	Input Threshol	d level					
	0 = Low Threshold							
	1 = High Threshold							

PB0CFG: PB0 configuration register.

PB0C	FG			0x5000007	70		0x00	
Rese	erved	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-	-	PWM1_OUT	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit6	PWM	1_OUT: PWM	1 Output	Enable		<u> </u>		
	0 = P	WM output dis	abled					
	1 = P	WM output ena	abled					
Bit5	INTE	: Pin Change Ir	nterrupt e	enable bit				
	0 = Ir	nterrupt disable	d					
	1 = Ir	nterrupt enable	d					
Bit4	DD : [Data Direction						
	0 = Ir	nput						
	1 = C	output						
Bit3	STR:	Pull Up/Down	Strength	Control				
	0 = L	ow Strength (1	00uA)					
	1 = H	igh Strength (5	imA)					
Bit2	PUP:	Pull up enable						
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = Disabled							
	1 = Enabled							
Bit0	LVL:	Input Threshol	d level					
	0 = Low Threshold							
	1 = H	igh Threshold						

PB1CFG: PB1 configuration register.

PB1C	FG			0x5000007	71		0x00	
R/	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
AC	CTL	PWM2_OUT	INTE	DD	STR	PUP	PDN	LVL
M	SB							LSB
Bit7	ACTI	.: Active Level	of Outpu	t				
	0 = A	ctive Low (PM	OS)					
	1 = A	ctive High (NM	OS)					
Bit6	PWM	2_OUT: PWM	2 Output	Enable				
	0 = P	WM output dis	abled					
	1 = P	WM output ena	abled					
Bit5	INTE	: Interrupt not a	available					
Bit4	DD: [Data Direction						
	0 = Ir	iput						
	1 = O	utput						
Bit3	STR:	Pull Up/Down	Strength	Control				
	0 = L	ow Strength (1	00uA)					
	1 = H	igh Strength (5	imA)					
Bit2	PUP:	Pull up enable						
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = D	isabled						
	1 = Enabled							
Bit0	LVL:	Input Threshol	d level					
	0 = L	ow Threshold						
	1 = H	igh Threshold						

<u>PBnCFG:</u> PBn configuration register. (n = 2, 3, 4)

PBnC	FG			0x50000072	/3/4		0x00	
Rese	erved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W
-			INTE	DD	STR	PUP	PDN	LVL
MS	MSB							LSB
Bit5	INTE	: Interrupt not a	available			-		
Bit4		Data Direction						
	0 = Ir							
		utput						
Bit3	STR:	Pull Up/Down	Strength	Control				
	0 = L	ow Strength (1	00uA)					
	1 = H	igh Strength (5	ōmA)					
Bit2	PUP:	Pull up enable) .					
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = D	isabled						
	1 = Enabled							
Bit0	D LVL: Input Threshold level							
	0 = Low Threshold							
	4 – 11	igh Threshold						

<u>PBmCFG:</u> PBm configuration register. (m = 5, 6, 7)

PBmC	CFG		0	x50000072	/3/4		0x00	
Rese	erved	Reserved	W	W	W	W	W	W
			INTE	DD	STR	PUP	PDN	LVL
M	MSB							LSB
Bit5	INTE: Pin Change		Interrupt ena	ble bit				
	0 = In	iterrupt disable	ed					
	1 = In	iterrupt enable	ed					
Bit4	DD: [Data Direction						
	0 = In	iput						
	1 = O	utput						
Bit3	STR:	Pull Up/Down	Strength Co	ontrol				
	0 = L	ow Strength (*	100uA)					
	1 = H	igh Strength (5mA)					
Bit2	PUP:	Pull up enabl	e.					
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down en	able.					
	0 = D	isabled						
	1 = Enabled							
Bit0	LVL: Input Threshold level							
	0 = L	ow Threshold						
	1 = H	igh Threshold						

<u>PCnCFG:</u> PCn configuration register. (n = 0, 1, 2)

PCnC	FG		0x5	0000078	/9/A		0x00	
Rese	erved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W
-	-	-	INTE	DD	STR	PUP	PDN	LVL
MSB								LSB
Bit5	INTE	: Pin Change Iı	nterrupt enable	bit				
	0 = In	iterrupt disable	d					
	1 = In	iterrupt enable	d					
Bit4	DD: D	Data Direction						
	0 = In	iput						
	1 = O	utput						
Bit3	STR:	Pull Up/Down	Strength Contr	ol				
	0 = Lo	ow Strength (1	00uA)					
	1 = H	igh Strength (5	imA)					
Bit2	PUP:	Pull up enable						
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = D	isabled						
	1 = Enabled							
Bit0	LVL:	Input Threshol	d level					
	0 = Lo	0 = Low Threshold						
	1 = H	1 = High Threshold						

PC3CFG: PC3 configuration register.

PC3CI	FG		0>	<5000007	'B		0x00	
Rese	rved	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-		PWM2_OUT	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit6	PWM	2_OUT: PWM2	2 Output Enab	le				
	0 = P	WM output disa	abled					
	1 = P	WM output ena	abled					
Bit5	INTE	: Pin Change Ir	nterrupt enable	e bit				
	0 = In	terrupt disable	d					
	1 = In	terrupt enabled	t					
Bit4	DD: [Data Direction						
	0 = In	put						
	1 = O	utput						
Bit3	STR:	Pull Up/Down	Strength Cont	rol				
	0 = Lo	ow Strength (10	00uA)					
		igh Strength (5						
Bit2		Pull up enable						
		isabled						
		nabled						
Bit1		Pull Down ena	able.					
	0 = Disabled							
	1 = Enabled							
Bit0	LVL: Input Threshold level							
	0 = Low Threshold							
	1 = H	igh Threshold						

PC4CFG: PC4 configuration register.

PB4CI	FG			0x5000007	C		0x00		
Rese	erved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W	
			INTE	DD	STR	PUP	PDN	LVL	
MS	MSB							LSB	
Bit5	INTE	Interrupt not a	available						
Bit4	יחח	DD: Data Direction							
Ditt	0 = In								
	1 = O	utput							
Bit3	STR:	Pull Up/Down	Strength	Control					
	0 = Lo	ow Strength (1	00uA)						
	1 = H	igh Strength (5	imA)						
Bit2	PUP:	Pull up enable	.						
	0 = D	isabled							
	1 = E	nabled							
Bit1	PDN:	Pull Down ena	able.						
	0 = D	isabled							
	1 = Enabled								
Bit0	LVL: Input Threshold level								
	0 = Low Threshold								
	1 = H	1 = High Threshold							

PC5CFG: PC5 configuration register.

PC5C	FG			0x5000007	′D		0x00	
Rese	erved	R/W	R/W	R/W	R/W	R/W	R/W	R/W
-	-	PWM1_OUT	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit6	PWM	I1_OUT: PWM	1 Output	Enable				
	0 = PWM output disabled							
	1 = PWM output enabled							
Bit5	INTE: Interrupt not available							
Bit4	DD : [Data Direction						
	0 = Ir	nput						
	1 = C	output						
Bit3	STR:	Pull Up/Down	Strength	Control				
	0 = L	ow Strength (1	00uA)					
		ligh Strength (5						
Bit2		Pull up enable						
		isabled						
	1 = E	nabled						
Bit1		Pull Down ena	able.					
	0 = Disabled							
	1 = Enabled							
Bit0		Input Threshol	d level					
		0 = Low Threshold						
	1 = H	1 = High Threshold						

PC6CFG: PC6 configuration register.

PC6C	FG			0x5000007	7E		0x00	
Rese	erved	Reserved	R/W	R/W	R/W	R/W	R/W	R/W
-		-	INTE	DD	STR	PUP	PDN	LVL
MS	MSB							LSB
Bit5	INTE	: Interrupt not a	available					
DILA								
Bit4	0 = In	Data Direction						
		utput						
Bit3		Pull Up/Down	Strength	Control				
	0 = Lo	ow Strength (1	00uA)					
	1 = H	igh Strength (5	imA)					
Bit2	PUP:	Pull up enable) .					
	0 = D	isabled						
	1 = E	nabled						
Bit1	PDN:	Pull Down ena	able.					
	0 = D	isabled						
	1 = Enabled							
Bit0		Input Threshol	d level					
	0 = Low Threshold							
	1 = H	1 = High Threshold						

PC7CFG: PC7 configuration register.

PC7C	FG		(0x5000071	F		0x00	
R/	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
AC	TL	PWM1_OUT	INTE	DD	STR	PUP	PDN	LVL
MS	SB							LSB
Bit7	ACTI	.: Active Level	of Output					
	0 = A	ctive Low (PM	OS)					
	1 = A	ctive High (NM	OS)					
Bit6	PWM	1_0UT: PWM	1 Output Enat	ole				
	0 = P	WM output dis	abled					
	1 = P	WM output ena	abled					
Bit5	INTE	: Interrupt not a	available					
Bit4	DD : [Data Direction						
	0 = Ir	iput						
		utput						
Bit3	STR:	Pull Up/Down	Strength Con	trol				
	0 = L	ow Strength (1	00uA)					
	1 = H	igh Strength (5	imA)					
Bit2		Pull up enable						
		isabled						
		nabled						
Bit1		Pull Down ena	able.					
		isabled						
		nabled						
Bit0		Input Threshol	d level					
		ow Threshold						
	1 = H	igh Threshold						

LEDIO: LED output configuration register.

LEDIO)			0x50000059			0x00			
Reserved Reserved		R/W	R/W	R/W	R/W	R/W	Reserved			
		LEDEN	LEDCUR3	LEDCUR2	LEDCUR1	LEDCUR0	-			
MSB								LSB		
Bit5	LED	LEDEN: LED enable								
	0 = l	ED output dis	abled							
	1 = l	ED output en	abled							
Bit4-1	LED	CUR[3:0]: LE	D Current Con	trol						
	0000) = 0 mA								
	000	l = 3 mA								
	0010 = 6 mA and so on									
	The e	equation for th	is current is: I=	3mA x LEDCl	JR					

8.12 SHORT CIRCUIT PROTECTION CIRCUITS

 μ Sesame provides support for Fuse Elimination and short circuit detection. The following sections will describe both functionalities in detail

8.12.1 Fuse Elimination Usage Description

Once enabled the fuse elimination circuit operates by automatically comparing the voltage between two input pins (PB6 and PB7). If the voltage difference between these pins exceeds a programmable voltage (Fuse Offset Voltage), a flag is set, allowing the program to detect the condition and act accordingly.

To use the fuse elimination feature the following setps must be taken:

- 1. Select the fuse offset value.
- 2. Enable the fuse detection
- 3. Execute a polling on the fuse detect flag at a suitable rate

8.12.2 Short Circuit Protection Usage Description

µSesame provides a short-circuit protection for the PWM1 and PWM2 when the PB1(PWM2) and PC6(PWM1) are used. This circuit operates by comparing a feedback input voltage with a programmable threshold value (using the ADC to measure this voltage) and automatically disabling the corresponding PWM (to a programmable safe state) in case of short-circuit detection.

The following sequence must be followed in order to protect against short-circuits in the PWM outputs:

- 1. Configure ADC settings
- 2. Select threshold and period
- 3. Enable ADC
- 4. Select appropriate sense level
- 5. Select a safe state
- 6. Enable Short Circuit Sense

Example: Let's enable the protection of the PWM2(PB1) using PA4 as feedback input operating the Siren.

Some comments:

- a. The active level is LOW.
- b. The Sense level is High.
- c. The PWM output is to be inverted

With this information we can start:

/*Config Port B, PWM2 in PB1, with P-MOS transistor (Active level = 0 = Low), PB1 as output, Interrupt mask disabled, low current in pull-up/down, pull-ups disabled, pull-downs disabled*/ Port Config(PTB, (PB1 PWM2), 0x00, 0x02, 0x00, 0x00, 0x00, 0x00); /* Note: If a N-MOS was used it would be necessary to change the auxiliary function parameter to (PB1 PWM2|PB1 ACTL). */ /*Config Port A, PWM2 sensor in PA4, no outputs, interrupt mask disabled, low current in pull-up/down, pull-ups disabled, pull-downs disabled, high threshold levels in PB4 to allow for the ADC to measure voltages up to $\sim 28V^*/$ Port Config(PTA, (PA4 PWM2 SNS EN), 0x00, 0x00, 0x00, 0x03, 0x00, 0x10); ADC Enable(ADCEN); //ADCs enabled ADC ClkDiv (16); //ADC clock divider 1:16 /*ADC 2 with a threshold of 0x80 (half scale) and 20*13 clock cycles delay period to start conversion.*/ ADC ProgramShortCircuit (ADC2, 0x80, 20); *PWMFUSE |= PWM2 SNS LVL1; //PWM2 sense level 1

8.12.3 Short Circuit Protected Related Registers

ADC1THRES	н		0x50000050		0x00			
R/W	R/W	R/W R/W R/W		R/W	R/W	R/W		
ADC1TH_7	ADC1TH_6	ADC1TH_5	ADC1TH_4	ADC1TH_3	ADC1TH_2	ADC1TH_1	ADC1TH_0	
MSB							LSB	

ADC1THRESH: ADC1 threshold value used to detect short circuit when the ADC is used to detect it.

<u>ADC1PERIOD:</u> ADC1 period (in conversion times) used to define the pooling of an input being tested for short circuit.

ADC1PERIOD			0x50000051		0x00		
R/W	R/W	R/W R/W R/W		R/W	R/W	R/W	
ADC1PR_7	ADC1PR_6	ADC1PR_5	ADC1PR_4	ADC1PR_3	ADC1PR_2	ADC1PR_1	ADC1PR_0
MSB							LSB

ADC2THRESH: ADC2 threshold value used to detect short circuit when the ADC is used to detect it.

ADC2THRES	н		0x50000052			0x00			
R/W	R/W	W R/W R/W R/W		R/W	R/W	R/W			
ADC2TH_7	ADC2TH_6	ADC2TH_5	ADC2TH_4	ADC2TH_3	ADC2TH_2	ADC2TH_1	ADC2TH_0		
MSB							LSB		

<u>ADC2PERIOD:</u> ADC2 period (in conversion times) used to define the pooling of an input being tested for short circuit.

ADC2PERIO	D		0x50000053		0x00			
R/W	R/W	R/W R/W R/W		R/W	R/W	R/W		
ADC2PR_7	ADC2PR_6	ADC2PR_5	ADC2PR_4	ADC2PR_3	ADC2PR_2	ADC2PR_1	ADC2PR_0	
MSB							LSB	

<u>PWMFUSE:</u> Fuse and Short Circuit Control Register

ADC11	THRESI	HOLD		0x50000058	3		0x00	
R/	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
PWM1SCF PWM2SCF		PWM2SCF	FUSEFLG	FUSEEN	PWM1SNSL	PWM2SNSL	FUSEOFF1	FUSEOFF0
MSB								LSB
Bit7	PWM	1SCF : PWM1 S	Short Circuit De	tection Flag				
	0 = N	o short circuit de	etected					
	1 = S	hort circuit dete	cted					
Bit6	PWM	2SCF: PWM2 S	Short Circuit De	tection Flag				
	0 = N	o short circuit de	etected					
	1 = S	hort circuit dete	cted					
Bit5	FUSE	EFLG: Fuse Det	ection Flag					
	0 = O	vercurrent not d	letected					
	1 = O	vercurrent dete	cted					
Bit4	FUSE	EEN: Fuse Enab	ole Signal					
	0 = D	isable fuse elim	ination circuit					
	1 = E	nable fuse elimi	nation circuit					
Bit3	PWM	1SNSL: PWM1	Sense Level					
	0 = L	ogic low level e>	kpected for nor	mal operation				
	1 = Lo	ogic high level e	expected for no	rmal operatior	ı			
Bit2	PWM	2SNSL: PWM2	Sense Level					
	0 = L	ogic low level ex	kpected for nor	mal operation				
	1 = L	ogic high level e	expected for no	rmal operatior	ı			
Bit1-0	FUSE	EOFF[1:0]: Fuse	e offset level					
	00 =	190 mV						
	01 = 3	360 mV						
	10 =	670 mV						
	11 = 3	860 mV						

8.13 CLOCK SOURCES

µSesame provides three clock sources:

- Internal auxiliary oscillator running at 10kHz. (This oscillator is always running, even when the device is in sleep mode, but its power consumption is negligible)
- Internal RC oscillator running at 10MHz.
- Crystal oscillator (Typically 3.579545MHz)

µSesame starts from power-on reset using the internal auxiliary oscillator. From this point on the user may select the crystal or the RC oscillators.

The crystal oscillator is required for RF reception and to operate the ultrasound interface. The 10MHz RC oscillator may be used if a higher execution speed, albeit with lower frequency accuracy, is necessary for the application. The 10kHz oscillator may be used in power saving modes.

8.13.1 Clock Sources Characteristics

The following table defines the main characteristics of the clock sources:

Table 21 - Clock Performance Specification, recommended operating conditions unless otherwise specified										
name	conditions	min	typ	max	unit					
Crystal Oscillator frequency			3.579545		MHz					
Frequency stability	Using defined crystal			TBD	ppm					
Auxiliary Oscillator	(Calibrated Frequency)		10		kHz					
Auxiliary Oscillator accuracy	Post-calibration to 10KHz, T _A =27°C			5	%					
RC Oscillator frequency			10		MHz					
RC Oscillator accuracy	Post-calibration to 10MHz, T _A =27°C			1	%					

8.13.2 Clock Related Registers

The following registers are used to control the behavior of the clock sources:

PMUCI	LK		0x50000000		0x15						
R/W	R/W	Reserved	R	R/W	R/W	R/W	R/W				
CKD1	CKD0	-	RCMON	XO_CK_ENB	RC_CK_ENB	CKSEL1	CKSEL0				
MSB			LSB								
Bit7-6	CKD[1:0] : Clock Frequency Divider										
	00 = Clock Divided by 1										
	01 = Clo	ock Divided by	2								
	10 = Clo	ock Divided by	4								
	11 = Clo	ock Divided by	8								
Bit4	RCMON	I: RC Oscillato	r Monitor								
	0 = RC (Oscillator Inac	tive								
	1 = RC (Oscillator Activ	/e								
Bit3	хо_ск	_ENB: Crystal	Oscillator Con	itrol							
	0 = Crys	stal Oscillator [Disable								
	1 = Crys	stal Oscillator E	Enable								
Bit2	RC_CK	_ENB: RC Os	cillator Control								
	0 = RC (Oscillator Disa	ble								
	1 = RC (Oscillator Enal	ble								
Bit1-0	CKSEL	[1:0] : Clock Se	elect								
	00 = 10	KHz Auxiliary	Clock								
	01 = 10MHz RC Oscillator Clock*										
	10 = Crystal Oscillator Clock										
11 = Not used											
*Note:	This is the	e clock selecte	ed after Power-	On-Reset and	for clock fault of	condtion					

PMUCLK: Processor Control register.

8.13.3 Clock Sources Usage Description

Upon Reset or Power-On Reset the system starts using the internal RC 10MHz oscillator.

Depending on the application requirements the designer can:

- Enable or disable the internal RC oscillator
- Enable or disable the external crystal
- Select the system clock source: RC or Crystal
- Enable the clock monitor interrupt to detect and process eventual failures in either the crystal or RC clock sources

Some peripherals require the crystal clock in order to operate properly:

Table 22 - Peripherals	Table 22 - Peripherals with specific clock source requirements							
Peripheral	Clock Required	Comments						
RF Receiver	Crystal (@3.579545MHz)							
Ultrasound	Crystal (@3.579545MHz)							
UART	Crystal (@3.579545MHz) or 10MHz RC Oscillator							
LIN	Crystal (@3.579545MHz)	Required in master mode only. In slave mode it can use the RC oscillator (10MHz).						

Example Code: Enable the Crystal oscillator. Wait for it to be stable and then selects it. Also enables the clock monitor interrupt and create an interrupt handler routine for it.

```
CLK_CrystalControl(XTON); //Enable Crystal Clock
for ( i = 0; i < 20000; i++); //Some delay to allow for crystal to start
CLK_SelectClockSource(XTCLOCK); //Selects crystal as clock source
NVIC_EnableIRQ(BrownOut_IRQn); //Enable the clock monitor interrupt</pre>
```


8.13.4 Power Management Unit (PMU)

 $\mu Sesame$ implements a power management unit. Its main characteristics are:

- HW reset Affects all aspects of µSesame
- SW reset Does not affect clock nor brownout setup
- Selectable Sleep mode and Halt Mode
- Programmable brownout detector

8.13.5 PMU Registers

µSesame implements the following registers:

PMURS	ST		0x50000001		0x01				
W	W	R/W	Reserved	Reserved	Reserved	R	R/W		
HWRS	ST SWRST	DLEEP	-	-	-	BROUT	PORF		
MSB	MSB				LSB				
Bit7	HWRST: Hard	ware reset							
	0 = Idle								
	1 = Hardware r	eset (autom	atically cleare	d after reset p	rocess comple	ted)			
Bit6	SWRST: Software reset								
	0 = Idle								
	1 = Software re	eset (automa	atically cleared	after reset pro	ocess complet	ed)			
Bit5	DLEEP: Deep	sleep (HAL]	r) mode						
	Writing:								
	0 = CI	ear deep sle	eep flag / 1 =	Put the syster	n in deep slee	p - Halt			
	Reading:								
	0 = FI	ag cleared	/ 1 = system ir	n deep sleep m	node				
Bit1	BROUT: Brown	nout indicate	or						
	0 = No browno	ut / 1 = Bro	ownout						
Bit0	PORF: Power-	On Reset fla	ag						
	Writing: 0 = Cl	ear POR /	1 = No effect						
	Reading: 0 = P	OR flag alre	ady cleared b	y application					
	1 = Tł	ne system ju	st came out of	f POR or HW I	Reset				

PMUBOR: BOR Control.

PMUBOP	र		0x50000002		0x00			
R/W	Reserved	Reserved	Reserved	R/W	R/W	R/W	R/W	
BOREN	OREN BORRST		BORINT	BOUTVALUE1	BOUTVALUE0			
MSB							LSB	
Bit3 Bit2	BOREN: Brownout enable 0 = Brownout disabled (for B2 parts) / enabled (for B3 parts) 1 = Brownout enabled (for B2 parts) / disabled (for B3 parts) BORRST: Brownout Reset enable 0 = Disable Brownout based reset (for B2 parts) / enable (for B3 parts) 1 = Enable Brownout based reset (for B2 parts) / enable (for B3 parts) 1 = Enable Brownout based reset (for B2 parts) / disable (for B3 parts) BORINT: Brownout interrupt							
Bit1-0	0 = Brownout inf 1 = Brownout inf BOUTVALUE [1 00 = 2.0V 01 = 2.2V 10 = 2.4V 11 = 2.6V	errupt enabled	t	Je				

PMUVREG1: VREG Control1.

РМИВС	OR		0x5001800D 0x04					
R/W Reserved		Reserved	R/W	R/W	R/W	R/W	R/W	
QPENVDD3IO -		-	RCAL1	RCAL0	XTALBIAS2	XTALBIAS1	XTALBIAS0	
MSI	MSB							LSB
Bit7	QPE	NVDD3IO: Cha	irge Pump En	able for 3	8.3V IO S	upply		
0 = disabled								
	1 = ei	nabled						

PMUVREG2: VREG Control2.

PMUBOR		0x5001800F			0x00			
Reseved		R/W	R/W	R/W	R/W	R/W	R/W	R/W
-		ADCCYC2	ADCCYC1	ADCCYC0	QPENVDD3 ANA	QPENVDD FLA	QPENVDD MCU	QPENVDD3 DIG
MSE	3							LSB
Bit3	QPENVDD3ANA: Charge Pump Enable for 3.3V Analog Supply							
	0 = disabled							
	1 = enabled							
Bit2	QPE	NVDDFLA: C	harge Pump Er	hable for 2.6V F	lash Supply			
	0 = disabled							
	1 = enabled							
Bit1	QPENVDDMCU: Charge Pump Enable for 1.8V MCU Supply							
0 = disabled								
	1 = enabled							
Bit0	QPENVDD3DIG : Charge Pump Enable for 3.3V Digital Supply							
	0 = disabled							
	1 = e	1 = enabled						

8.13.6 PMU Usage Description

The PMU module allows for the control of reset, deep sleep (halt), sleep, and brownout.

8.13.6.1 PMU control of Reset:

There are two forms of reset that can be issued:

- Hardware reset: In this reset all peripherals are reset, the 10 KHz clock is selected and all other clock sources are disabled, but the brownout selection is kept.
- Software reset: In this reset all peripherals are reset but the clock setup is kept unchanged along with the brownout selection.

Code Examples: HW reset and SW reset:

```
PMU_HwReset();
PMU_SwReset();
```


8.13.6.2 PMU control of sleep and deep sleep (halt) modes:

The PMU can set the system into sleep or deep sleep (halt) modes.

In the deep sleep mode:

- the CPU is halted
- Any enabled clock source will continue to operate
- The three timers (Timer0, Timer1 and Timer2) and the SysTick Timer will stop operating
- All other peripherals will keep running (if enabled and fed by their required source clock)
- The system will leave the deep sleep (halt) mode only through a reset or POR (Power-On Reset). The sources of a reset can be the wakeup timer or any peripheral that generates an interrupt independently of the interrupt being enabled by the NVIC module.(Nested Vector Interrupt Controller)

Note: For those peripherals that have in their registers a bit that locally enables the interrupt this register has to be enabled in order to reset the system. Example: For the GPIOs ports PORTA, PORTB and PORTC the INTE bits of the I/O pins selected to reset the part upon change must be set.

Code Example: Enabling the reset by enabling an interrupt from PORTA[0] upon change. (Port A, bit0)

//PortA.0 interrupt enabled, pull up enabled
Port_Config(PTA, 0, 0x01, 0x00, 0x00, 0x01, 0x00, 0x00);
PMU_Deep_Sleep(); //System in deep sleep (halt)

In the sleep mode:

- 1. the CPU is halted
- 2. Any enabled clock source will continue to operate
- 3. All timers (Timer0, Timer1 and Timer2) and the SysTick Timer will continue operating
- 4. All other peripherals will keep running if enabled and fed by their required source clock
- 5. Besides a POR and/or reset the system will leave the sleep mode also through an interrupt; the sources of an interrupt can be any peripheral generating an interrupt.

Note: The interrupt must be enabled by the NVIC module.(**N**ested **V**ector Interrupt **C**ontroller) <u>and</u> for those peripherals that have in their registers a bit that locally enables the interrupt this register also has to be enabled in order to generate an interrupt and wakeup the system from sleep.

Example: For the GPIOs ports PORTA, PORTB and PORTC the INTE bits of the I/O pins selected to reset the part upon change must be set.

Code Example:

```
//PortA.0 interrupt enabled, pull up enabled
Port_Config(PTA, 0, 0x01, 0x00, 0x01, 0x00, 0x00);
NVIC_EnableIRQ(PIN_IRQn); //Pin change interrupt enabled in NVIC
PMU_Sleep(); //Part in sleep mode
```

8.13.6.3 PMU control of Brownout:

The PMU controls the brownout. It entails:

- · Enabling or disabling the brownout circuit
- Selecting the behavior when a brownout is detected:
 - o Generate an interrupt
 - o Reset the system
- Selecting the brownout voltage level

Code Example: Enable the BOR, with interrupt but no reset and with 2.4V level.

<pre>BOR_ResetControl(BORRSTDIS);</pre>	//Brownout reset disabled
BOR_IntControl (BORINTEN);	//Brownout interrupt enabled
BOR_Level(BOR24V);	//Brownout level = 2.4V
BOR_Control (BOREN);	//Brownout enabled

8.14 WAKE-UP TIMER

In addition to the Timer0/1/2 μ Sesame implements a timer capable of waking-up the microcontroller from a sleep state.

The wake up timer is a timer used to allow for recovery from deep sleep, including when the microcontroller is disconnected from its power supply.

The following register controls the wake-up timer:

WKPTIME: Wakeup timer control.

WKPTIME		0x50000004			0x00		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
MANT3	MANT2	MANT1	MANT0	EXP3	EXP2	EXP1	EXP0
MSB							LSB
Bit7-4 MANT [3:0] : Mantissa of the wakeup timer Bit3-0 EXP [3:0] : Exponent of the wakeup timer (range: 012) WakeupPeriod = Mantissa * 2 ^(Exponent+1) / SystemClock							

For instance, a value of 0x54 would give a time of: (Assuming the application is running from the 10 kHz internal oscillator)

WakeupPeriod = $5 * 2^{(4+1)} / 10$ kHz = 16msec

Code Example: Enabling the wakeup timer according to the previous example.

9.0 REFERENCES

ISM Band references:

http://en.wikipedia.org/wiki/ISM_band

http://ecfr.gpoaccess.gov/cgi/t/text/textidx?c=ecfr&sid=8a0249759d545fa2c9ea0840b08bb817&rgn=div5&view=text&node=47:1.0.1.1.14&idno=47)

10.0 REVISION HISTORY

Rev #	Date	Action	Ву
0.1	20 Jan 2011	Initial Draft	CG
0.5	7 June 2011	Fifth Draft	DDK
1.0	22 Jull 2014	Update PIN interrupt (latest AyDeeKay reference)	IA
2.0	14 Sep 2015	Indie version and reformat, remove PAN	CR

11.0 CONTACTS

United States

32 Journey Aliso Viejo, California 92656, USA Tel: +1 949-608-0854 sales@indiesemi.com

China

232 Room, Donghai Wanhao Plaza, South Hi-tech 11th Road, Hi-tech Industry Park, Nanshan District, Shenzhen, China. Tel: +86 755-86116939

Scotland

MWB Business Exchange 9-10 St. Andrew Square Edinburgh EH2 2AF, Scotland Tel: +44 131 718 6378

http://www.indiesemi.com/

Important Notice

indie semiconductor reserves the right to make changes, corrections, enhancements, modifications, and improvements to indie semiconductor products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on indie semiconductor products before placing orders. indie semiconductor products are sold pursuant to indie semiconductor's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of indie semiconductor products and services described herein. indie semiconductor assumes no liability for the choice, selection, application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by indie semiconductor by this document.

The materials, products and information are provided "as is" without warranty of any kind, whether express, implied, statutory, or otherwise, including fitness for a particular purpose or use, merchantability, performance, quality or non-infringement of any intellectual property right. Indie semiconductor does not warrant the accuracy or completeness of the information, text, graphics or other items contained herein. indie semiconductor shall not be liable for any damages, including but not limited to any special, indirect, incidental, statutory, or consequential damages, including without limitation, lost of revenues or lost profits that may result from the use of the materials or information , whether or not the recipient of material has been advised of the possibility of such damage.

Unless expressly approved in writing by two authorized indie semiconductor representatives, indie semiconductor products are not designed, intended, warranted, or authorized for use as components in military, space, or aircraft, in systems intended to support or sustain life, or for any other application in which the failure or malfunction of the indie semiconductor product may result in personal injury, death, or severe property or environmental damage.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015, indie semiconductor, all Rights Reserved